Minimal zero sum sequences of length four over finite cyclic groups

被引:24
作者
Li, Yuanlin [1 ]
Plyley, Chris [1 ]
Yuan, Pingzhi [2 ]
Zeng, Xiangneng [3 ]
机构
[1] Brock Univ, Dept Math, St Catharines, ON L2S 3A1, Canada
[2] S China Normal Univ, Sch Math, Guangzhou 510631, Guangdong, Peoples R China
[3] Sun Yat Sen Univ, Dept Math, Guangzhou 510275, Guangdong, Peoples R China
基金
加拿大自然科学与工程研究理事会;
关键词
Zero-sum problem; Zero-sum sequence; Minimal zero-sum sequence;
D O I
10.1016/j.jnt.2009.12.005
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Text. Let G be a finite cyclic group. Every sequence S over G can be written in the form S = (n(1)g) "... " (n(1)g) where g is an element of G and n(1) ,..., n(1) is an element of [1, ord(g)], and the index ind(S) of S is defined to be the minimum of (n(1) + ... + n(1))/ord(g) over all possible g is an element of G such that (g) = (supp(S)). The problem regarding the index of sequences has been studied in a series of papers, and a main focus is to determine sequences of index 1. In the present paper, we show that if G is a cyclic of prime power order such that gcd([G], 6) = 1, then every minimal zero-sum sequence of length 4 has index 1. Video. For a video summary of this paper, please click here or visit http://www.youtube.com/watch?v=BC7josX_xVs. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:2033 / 2048
页数:16
相关论文
共 12 条
  • [1] Minimal zero-sequences and the strong Davenport constant
    Chapman, ST
    Freeze, M
    Smith, WW
    [J]. DISCRETE MATHEMATICS, 1999, 203 (1-3) : 271 - 277
  • [2] Gao W., 2000, INTEGERS
  • [3] On products of k atoms
    Gao, Weidong
    Geroldinger, Alfred
    [J]. MONATSHEFTE FUR MATHEMATIK, 2009, 156 (02): : 141 - 157
  • [4] Geroldinger A, 2009, ADV COURSES MATH CRM, P1, DOI 10.1007/978-3-7643-8962-8
  • [5] Geroldinger A., 1990, COLLOQUIA MATH SOC J, VII, P723
  • [6] Geroldinger A., 2006, Pure and Applied Mathematics, V278
  • [7] AN ADDITION THEOREM ON THE INTEGERS MODULO N
    LEMKE, P
    KLEITMAN, D
    [J]. JOURNAL OF NUMBER THEORY, 1989, 31 (03) : 335 - 345
  • [8] Ponomarenko V., 2004, INTEGERS, V4
  • [9] Long zero-free sequences in finite cyclic groups
    Savchev, Svetoslav
    Chen, Fang
    [J]. DISCRETE MATHEMATICS, 2007, 307 (22) : 2671 - 2679
  • [10] Smith W. W., 2005, INTEGERS, V5