Prediction Models for the Clinical Severity of Patients With COVID-19 in Korea: Retrospective Multicenter Cohort Study

被引:15
作者
Oh, Bumjo [1 ]
Hwangbo, Suhyun [2 ]
Jung, Taeyeong [2 ]
Min, Kyungha [1 ]
Lee, Chanhee [2 ]
Apio, Catherine [2 ]
Lee, Hyejin [3 ]
Lee, Seungyeoun [4 ]
Moon, Min Kyong [5 ]
Kim, Shin-Woo [6 ]
Park, Taesung [7 ]
机构
[1] Seoul Natl Univ, Dept Family Med, Seoul Metropolitan Govt, Boramae Med Ctr, Seoul, South Korea
[2] Seoul Natl Univ, Interdisciplinary Program Bioinformat, Seoul, South Korea
[3] Seoul Natl Univ, Dept Family Med, Bundang Hosp, Gyeonggi Do, South Korea
[4] Sejong Univ, Dept Math & Stat, Seoul, South Korea
[5] Seoul Natl Univ, Dept Internal Med, Seoul Metropolitan Govt, Boramae Med Ctr, Seoul, South Korea
[6] Kyungpook Natl Univ, Dept Internal Med, Daegu, South Korea
[7] Seoul Natl Univ, Dept Stat, 1 Gwanak Ro, Seoul 08826, South Korea
关键词
clinical decision support system; clinical characteristics; COVID-19; SARS-CoV-2; prognostic tool; severity; LASSO;
D O I
10.2196/25852
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
Background: Limited information is available about the present characteristics and dynamic clinical changes that occur in patients with COVID-19 during the early phase of the illness. Objective: This study aimed to develop and validate machine learning models based on clinical features to assess the risk of severe disease and triage for COVID-19 patients upon hospital admission. Methods: This retrospective multicenter cohort study included patients with COVID-19 who were released from quarantine until April 30, 2020, in Korea. A total of 5628 patients were included in the training and testing cohorts to train and validate the models that predict clinical severity and the duration of hospitalization, and the clinical severity score was defined at four levels: mild, moderate, severe, and critical. Results: Out of a total of 5601 patients, 4455 (79.5%), 330 (5.9%), 512 (9.1%), and 301 (5.4%) were included in the mild, moderate, severe, and critical levels, respectively. As risk factors for predicting critical patients, we selected older age, shortness of breath, a high white blood cell count, low hemoglobin levels, a low lymphocyte count, and a low platelet count. We developed 3 prediction models to classify clinical severity levels. For example, the prediction model with 6 variables yielded a predictive power of >0.93 for the area under the receiver operating characteristic curve. We developed a web-based nomogram, using these models. Conclusions: Our prediction models, along with the web-based nomogram, are expected to be useful for the assessment of the onset of severe and critical illness among patients with COVID-19 and triage patients upon hospital admission.
引用
收藏
页数:16
相关论文
共 50 条
[41]   Adult patients admitted to a tertiary hospital for COVID-19 and risk factors associated with severity: a retrospective cohort study [J].
dos Santos, Veridiana Baldon ;
Stein, Airton Tetelbom ;
Barilli, Sofia Louise Santin ;
Garbini, Andresa Fontoura ;
de Almeida, Rafaela Charao ;
Carazai, Daniela dos Reis ;
dos Santos, Fernanda Costa ;
Lutkmeier, Raquel ;
Greve, Isadora Helena ;
Klafke, Andre ;
Mussart, Ketlen Monteiro ;
Wittke, Estefania Inez .
REVISTA DO INSTITUTO DE MEDICINA TROPICAL DE SAO PAULO, 2022, 64
[42]   A nomogram for predicting mortality in patients with COVID-19 and solid tumors: a multicenter retrospective cohort study [J].
Liu, Chao ;
Li, Li ;
Song, Kehan ;
Zhan, Zhi-Ying ;
Yao, Yi ;
Gong, Hongyun ;
Chen, Yuan ;
Wang, Qun ;
Dong, Xiaorong ;
Xie, Zhibin ;
Ou, Chun-Quan ;
Hu, Qinyong ;
Song, Qibin .
JOURNAL FOR IMMUNOTHERAPY OF CANCER, 2020, 8 (02)
[43]   Thymosin α1 therapy in critically ill patients with COVID-19: A multicenter retrospective cohort study [J].
Wu, Ming ;
Ji, Jing-jing ;
Zhong, Li ;
Shao, Zi-yun ;
Xie, Qi-feng ;
Liu, Zhe-ying ;
Wang, Cong-lin ;
Su, Lei ;
Feng, Yong-wen ;
Liu, Zhi-feng ;
Yao, Yong-ming .
INTERNATIONAL IMMUNOPHARMACOLOGY, 2020, 88
[44]   Biomarker of severity in hospitalised patients with COVID-19: a retrospective study [J].
Qian, Fen-Hong ;
Liu, Yu-Xue ;
Cao, Yu ;
Huang, Jing ;
Zhu, Rong-Hao .
BMJ OPEN, 2024, 14 (07) :1-7
[45]   Infants hospitalized for acute COVID-19: disease severity in a multicenter cohort study [J].
Merckx, Joanna ;
Morris, Shaun K. ;
Bitnun, Ari ;
Gill, Peter ;
El Tal, Tala ;
Laxer, Ronald M. ;
Yeh, Ann ;
Yea, Carmen ;
Ulloa-Gutierrez, Rolando ;
Brenes-Chacon, Helena ;
Yock-Corrales, Adriana ;
Ivankovich-Escoto, Gabriela ;
Soriano-Fallas, Alejandra ;
Hernandez-de Mezerville, Marcela ;
Papenburg, Jesse ;
Lefebvre, Marie-Astrid ;
Nateghian, Alireza ;
Aski, Behzad Haghighi ;
Manafi, Ali ;
Dwilow, Rachel ;
Bullard, Jared ;
Cooke, Suzette ;
Dewan, Tammie ;
Restivo, Lea ;
Lopez, Alison ;
Sadarangani, Manish ;
Roberts, Ashley ;
Barton, Michelle ;
Petel, Dara ;
Le Saux, Nicole ;
Bowes, Jennifer ;
Purewal, Rupeena ;
Lautermilch, Janell ;
Tehseen, Sarah ;
Bayliss, Ann ;
Wong, Jacqueline K. ;
Viel-Theriault, Isabelle ;
Piche, Dominique ;
Top, Karina A. ;
Leifso, Kirk ;
Foo, Cheryl ;
Panetta, Luc ;
Robinson, Joan .
EUROPEAN JOURNAL OF PEDIATRICS, 2022, 181 (06) :2535-2539
[46]   Infants hospitalized for acute COVID-19: disease severity in a multicenter cohort study [J].
Joanna Merckx ;
Shaun K. Morris ;
Ari Bitnun ;
Peter Gill ;
Tala El Tal ;
Ronald M. Laxer ;
Ann Yeh ;
Carmen Yea ;
Rolando Ulloa-Gutierrez ;
Helena Brenes-Chacon ;
Adriana Yock-Corrales ;
Gabriela Ivankovich-Escoto ;
Alejandra Soriano-Fallas ;
Marcela Hernandez-de Mezerville ;
Jesse Papenburg ;
Marie-Astrid Lefebvre ;
Alireza Nateghian ;
Behzad Haghighi Aski ;
Ali Manafi ;
Rachel Dwilow ;
Jared Bullard ;
Suzette Cooke ;
Tammie Dewan ;
Lea Restivo ;
Alison Lopez ;
Manish Sadarangani ;
Ashley Roberts ;
Michelle Barton ;
Dara Petel ;
Nicole Le Saux ;
Jennifer Bowes ;
Rupeena Purewal ;
Janell Lautermilch ;
Sarah Tehseen ;
Ann Bayliss ;
Jacqueline K. Wong ;
Isabelle Viel-Thériault ;
Dominique Piche ;
Karina A. Top ;
Kirk Leifso ;
Cheryl Foo ;
Luc Panetta ;
Joan Robinson .
European Journal of Pediatrics, 2022, 181 :2535-2539
[47]   Epidemiology, clinical characteristics, and virologic features of COVID-19 patients in Kazakhstan: A nation-wide retrospective cohort study [J].
Yegorov, Sergey ;
Goremykina, Maiya ;
Ivanova, Raifa ;
Good, Sara, V ;
Babenko, Dmitriy ;
Shevtsov, Alexandr ;
MacDonald, Kelly S. ;
Zhunussov, Yersin .
LANCET REGIONAL HEALTH-EUROPE, 2021, 4
[48]   Clinical Course of COVID-19 in Patients with Inflammatory Bowel Disease in Korea: a KASID Multicenter Study [J].
Lee, Jin Wook ;
Song, Eun Mi ;
Jung, Sung-Ae ;
Jung, Sung Hoon ;
Kim, Kwang Woo ;
Koh, Seong-Joon ;
Lee, Hyun Jung ;
Hong, Seung Wook ;
Park, Jin Hwa ;
Hwang, Sung Wook ;
Yang, Dong-Hoon ;
Ye, Byong Duk ;
Byeon, Jeong-Sik ;
Myung, Seung-Jae ;
Yang, Suk-Kyun ;
Park, Sang Hyoung .
JOURNAL OF KOREAN MEDICAL SCIENCE, 2021, 36 (48)
[49]   Clinical course of COVID-19 patients treated with ECMO: A multicenter study in Daegu, South Korea [J].
Jang, Woo Sung ;
Kim, JaeBum ;
Baek, Jonghyun ;
Jung, Hanna ;
Jang, Jae Seok ;
Park, Jae Seok ;
Oh, Tak-Hyuk ;
Jang, Se Yong ;
Kim, Yun Seok ;
Kwon, Yong Shik .
HEART & LUNG, 2021, 50 (01) :21-27
[50]   Examining the Determinants of COVID-19 Severity: A Cohort Study in Morocco of 915 Patients [J].
Mahdi, Zaynab ;
Charif, Faiza ;
Gourinda, Adil ;
Sammoud, Karima ;
Bousgheiri, Fadila ;
Belafki, Hassana ;
Salmane, Fadila ;
Ftouh, Wiam ;
Benkacem, Mariem ;
Najdi, Adil .
CUREUS JOURNAL OF MEDICAL SCIENCE, 2022, 14 (12)