Prediction Models for the Clinical Severity of Patients With COVID-19 in Korea: Retrospective Multicenter Cohort Study

被引:15
作者
Oh, Bumjo [1 ]
Hwangbo, Suhyun [2 ]
Jung, Taeyeong [2 ]
Min, Kyungha [1 ]
Lee, Chanhee [2 ]
Apio, Catherine [2 ]
Lee, Hyejin [3 ]
Lee, Seungyeoun [4 ]
Moon, Min Kyong [5 ]
Kim, Shin-Woo [6 ]
Park, Taesung [7 ]
机构
[1] Seoul Natl Univ, Dept Family Med, Seoul Metropolitan Govt, Boramae Med Ctr, Seoul, South Korea
[2] Seoul Natl Univ, Interdisciplinary Program Bioinformat, Seoul, South Korea
[3] Seoul Natl Univ, Dept Family Med, Bundang Hosp, Gyeonggi Do, South Korea
[4] Sejong Univ, Dept Math & Stat, Seoul, South Korea
[5] Seoul Natl Univ, Dept Internal Med, Seoul Metropolitan Govt, Boramae Med Ctr, Seoul, South Korea
[6] Kyungpook Natl Univ, Dept Internal Med, Daegu, South Korea
[7] Seoul Natl Univ, Dept Stat, 1 Gwanak Ro, Seoul 08826, South Korea
关键词
clinical decision support system; clinical characteristics; COVID-19; SARS-CoV-2; prognostic tool; severity; LASSO;
D O I
10.2196/25852
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
Background: Limited information is available about the present characteristics and dynamic clinical changes that occur in patients with COVID-19 during the early phase of the illness. Objective: This study aimed to develop and validate machine learning models based on clinical features to assess the risk of severe disease and triage for COVID-19 patients upon hospital admission. Methods: This retrospective multicenter cohort study included patients with COVID-19 who were released from quarantine until April 30, 2020, in Korea. A total of 5628 patients were included in the training and testing cohorts to train and validate the models that predict clinical severity and the duration of hospitalization, and the clinical severity score was defined at four levels: mild, moderate, severe, and critical. Results: Out of a total of 5601 patients, 4455 (79.5%), 330 (5.9%), 512 (9.1%), and 301 (5.4%) were included in the mild, moderate, severe, and critical levels, respectively. As risk factors for predicting critical patients, we selected older age, shortness of breath, a high white blood cell count, low hemoglobin levels, a low lymphocyte count, and a low platelet count. We developed 3 prediction models to classify clinical severity levels. For example, the prediction model with 6 variables yielded a predictive power of >0.93 for the area under the receiver operating characteristic curve. We developed a web-based nomogram, using these models. Conclusions: Our prediction models, along with the web-based nomogram, are expected to be useful for the assessment of the onset of severe and critical illness among patients with COVID-19 and triage patients upon hospital admission.
引用
收藏
页数:16
相关论文
共 39 条
[31]   A Framework for Rationing Ventilators and Critical Care Beds During the COVID-19 Pandemic [J].
White, Douglas B. ;
Lo, Bernard .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2020, 323 (18) :1773-1774
[32]   PROBAST: A Tool to Assess the Risk of Bias and Applicability of Prediction Model Studies [J].
Wolff, Robert F. ;
Moons, Karel G. M. ;
Riley, Richard D. ;
Whiting, Penny F. ;
Westwood, Marie ;
Collins, Gary S. ;
Reitsma, Johannes B. ;
Kleijnen, Jos ;
Mallett, Sue ;
Altman, Doug ;
Bossuyt, Patrick ;
Cook, Nancy R. ;
D'Amico, Gennaro ;
Debray, Thomas P. A. ;
Deeks, Jon ;
de Groot, Joris ;
di Angelantonio, Emanuele ;
Fahey, Tom ;
Harrell, Frank ;
Hayden, Jill A. ;
Heymans, Martijn W. ;
Hooft, Lotty ;
Hyde, Chris ;
Ioannidis, John ;
Iorio, Alfonso ;
Kaptoge, Stephen ;
Knottnerus, Andre ;
Leeflang, Mariska ;
Nixon, Frances ;
Perel, Pablo ;
Phillips, Bob ;
Raatz, Heike ;
Riemsma, Rob ;
Rovers, Maroeska ;
Rutjes, Anne W. S. ;
Sauerbrei, Willi ;
Sauerland, Stefan ;
Scheibler, Fueloep ;
Scholten, Rob ;
Schuit, Ewoud ;
Steyerberg, Ewout ;
Tan, Toni ;
ter Riet, Gerben ;
van der Windt, Danielle ;
Vergouwe, Yvonne ;
Vickers, Andrew ;
Wood, Angela M. .
ANNALS OF INTERNAL MEDICINE, 2019, 170 (01) :51-+
[33]   Development of a clinical decision support system for severity risk prediction and triage of COVID-19 patients at hospital admission: an international multicentre study [J].
Wu, Guangyao ;
Yang, Pei ;
Xie, Yuanliang ;
Woodruff, Henry C. ;
Rao, Xiangang ;
Guiot, Julien ;
Frix, Anne-Noelle ;
Louis, Renaud ;
Moutschen, Michel ;
Li, Jiawei ;
Li, Jing ;
Yan, Chenggong ;
Du, Dan ;
Zhao, Shengchao ;
Ding, Yi ;
Liu, Bin ;
Sun, Wenwu ;
Albarello, Fabrizio ;
D'Abramo, Alessandra ;
Schinina, Vincenzo ;
Nicastri, Emanuele ;
Occhipinti, Mariaelena ;
Barisione, Giovanni ;
Barisione, Emanuela ;
Halilaj, Iva ;
Lovinfosse, Pierre ;
Wang, Xiang ;
Wu, Jianlin ;
Lambin, Philippe .
EUROPEAN RESPIRATORY JOURNAL, 2020, 56 (02)
[34]   Characteristics of and Important Lessons From the Coronavirus Disease 2019 (COVID-19) Outbreak in China Summary of a Report of 72 314 Cases From the Chinese Center for Disease Control and Prevention [J].
Wu, Zunyou ;
McGoogan, Jennifer M. .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2020, 323 (13) :1239-1242
[35]   Prediction models for diagnosis and prognosis of covid-19 infection: systematic review and critical appraisal [J].
Wynants, Laure ;
Van Calster, Ben ;
Collins, Gary S. ;
Riley, Richard D. ;
Heinze, Georg ;
Schuit, Ewoud ;
Albu, Elena ;
Arshi, Banafsheh ;
Bellou, Vanesa ;
Bonten, Marc M. J. ;
Dahly, Darren L. ;
Damen, Johanna A. ;
Debray, Thomas P. A. ;
de Jong, Valentijn M. T. ;
De Vos, Maarten ;
Dhiman, Paula ;
Ensor, Joie ;
Gao, Shan ;
Haller, Maria C. ;
Harhay, Michael O. ;
Henckaerts, Liesbet ;
Heus, Pauline ;
Hoogland, Jeroen ;
Hudda, Mohammed ;
Jenniskens, Kevin ;
Kammer, Michael ;
Kreuzberger, Nina ;
Lohmann, Anna ;
Levis, Brooke ;
Luijken, Kim ;
Ma, Jie ;
Martin, Glen P. ;
McLernon, David J. ;
Andaur Navarro, Constanza L. ;
Reitsma, Johannes B. ;
Sergeant, Jamie C. ;
Shi, Chunhu ;
Skoetz, Nicole ;
Smits, Luc J. M. ;
Snell, Kym I. E. ;
Sperrin, Matthew ;
Spijker, Rene ;
Steyerberg, Ewout W. ;
Takada, Toshihiko ;
Tzoulaki, Ioanna ;
van Kuijk, Sander M. J. ;
van Bussel, Bas C. T. ;
van der Horst, Iwan C. C. ;
Reeve, Kelly ;
van Royen, Florien S. .
BMJ-BRITISH MEDICAL JOURNAL, 2020, 369
[36]   Thrombocytopenia in patients with severe acute respiratory syndrome (review) [J].
Yang, M ;
Ng, MH ;
Li, CK .
HEMATOLOGY, 2005, 10 (02) :101-105
[37]  
Zhang H, MEDRXIV
[38]   Lymphocyte percentage and hemoglobin as a joint parameter for the prediction of severe and nonsevere COVID-19: a preliminary study [J].
Zhang, Wenping ;
Zhang, Zhongming ;
Ye, Yi ;
Luo, Yanting ;
Pan, Shiyao ;
Qi, Huan ;
Yu, Zhiyong ;
Qu, Jiuxin .
ANNALS OF TRANSLATIONAL MEDICINE, 2020, 8 (19)
[39]   Prediction model and risk scores of ICU admission and mortality in COVID-19 [J].
Zhao, Zirun ;
Chen, Anne ;
Hou, Wei ;
Graham, James M. ;
Li, Haifang ;
Richman, Paul S. ;
Thode, Henry C. ;
Singer, Adam J. ;
Duong, Tim Q. .
PLOS ONE, 2020, 15 (07)