Harnessing no-photon exciton generation chemistry to engineer semiconductor nanostructures

被引:12
作者
Beke, David [1 ]
Karolyhazy, Gyula [1 ,2 ]
Czigany, Zsolt [3 ]
Bortel, Gabor [1 ]
Kamaras, Katalin [1 ]
Gali, Adam [1 ,4 ]
机构
[1] Hungarian Acad Sci, Inst Solid State Phys & Opt, Wigner Res Ctr Phys, POB 49, H-1525 Budapest, Hungary
[2] Budapest Univ Technol & Econ, Fac Chem Technol & Biotechnol, Muegyet Rkp 7-9, H-1111 Budapest, Hungary
[3] Hungarian Acad Sci, Inst Tech Phys & Mat Sci, Ctr Energy Res, Konkoly Thege M Ut 29-33, H-1121 Budapest, Hungary
[4] Budapest Univ Technol & Econ, Dept Atom Phys, Budafoki Ut 8, H-1111 Budapest, Hungary
关键词
CARBIDE QUANTUM DOTS; REDOX REACTIONS; SILICON; LUMINESCENCE; IDENTIFICATION; OXIDATION; RADICALS; OXYGEN;
D O I
10.1038/s41598-017-10751-x
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Production of semiconductor nanostructures with high yield and tight control of shape and size distribution is an immediate quest in diverse areas of science and technology. Electroless wet chemical etching or stain etching can produce semiconductor nanoparticles with high yield but is limited to a few materials because of the lack of understanding the physical-chemical processes behind. Here we report a no-photon exciton generation chemistry (NPEGEC) process, playing a key role in stain etching of semiconductors. We demonstrate NPEGEC on silicon carbide polymorphs as model materials. Specifically, size control of cubic silicon carbide nanoparticles of diameter below ten nanometers was achieved by engineering hexagonal inclusions in microcrystalline cubic silicon carbide. Our finding provides a recipe to engineer patterned semiconductor nanostructures for a broad class of materials.
引用
收藏
页数:6
相关论文
共 43 条
[1]  
Allen J Bard., 1985, Standard potentials in aqueous solution, V1st
[2]   Formation of nanostructured silicon surfaces by stain etching [J].
Ayat, Maha ;
Belhousse, Samia ;
Boarino, Luca ;
Gabouze, Noureddine ;
Boukherroub, Rabah ;
Kechouane, Mohamed .
NANOSCALE RESEARCH LETTERS, 2014, 9
[3]   Identification of Luminescence Centers in Molecular-Sized Silicon Carbide Nanocrystals [J].
Beke, David ;
Janosi, Tibor Z. ;
Somogyi, Balint ;
Major, Daniel A. ;
Szekrenyes, Zsolt ;
Erostyak, Janos ;
Kamaras, Katalin ;
Gali, Adam .
JOURNAL OF PHYSICAL CHEMISTRY C, 2016, 120 (01) :685-691
[4]   Dominant luminescence is not due to quantum confinement in molecular-sized silicon carbide nanocrystals [J].
Beke, David ;
Szekrenyes, Zsolt ;
Czigany, Zsolt ;
Kamaras, Katalin ;
Gali, Adam .
NANOSCALE, 2015, 7 (25) :10982-10988
[5]   Silicon carbide quantum dots for bioimaging [J].
Beke, David ;
Szekrenyes, Zsolt ;
Palfi, Denes ;
Rona, Gergely ;
Balogh, Istvan ;
Maak, Pal Andor ;
Katona, Gergely ;
Czigany, Zsolt ;
Kamaras, Katalin ;
Rozsa, Balazs ;
Buday, Laszlo ;
Vertessy, Beata ;
Gali, Adam .
JOURNAL OF MATERIALS RESEARCH, 2013, 28 (02) :205-209
[6]   Preparation of small silicon carbide quantum dots by wet chemical etching [J].
Beke, David ;
Szekrenyes, Zsolt ;
Balogh, Istvan ;
Czigany, Zsolt ;
Kamaras, Katalin ;
Gali, Adam .
JOURNAL OF MATERIALS RESEARCH, 2013, 28 (01) :44-49
[7]   Luminescence mechanisms in 6H-SiC nanocrystals [J].
Botsoa, J. ;
Bluet, J. M. ;
Lysenko, V. ;
Sfaxi, L. ;
Zakharko, Y. ;
Marty, O. ;
Guillot, G. .
PHYSICAL REVIEW B, 2009, 80 (15)
[8]   Anisotropic etching of SiC whiskers [J].
Cambaz, GZ ;
Yushin, GN ;
Gogotsi, Y ;
Lutsenko, VG .
NANO LETTERS, 2006, 6 (03) :548-551
[9]   Controlled polytypic and twin-plane superlattices in III-V nanowires [J].
Caroff, P. ;
Dick, K. A. ;
Johansson, J. ;
Messing, M. E. ;
Deppert, K. ;
Samuelson, L. .
NATURE NANOTECHNOLOGY, 2009, 4 (01) :50-55
[10]   Micromachining of p-type 6H-SiC by electrochemical etching [J].
Chang, WH .
SENSORS AND ACTUATORS A-PHYSICAL, 2004, 112 (01) :36-43