PSEUDO-DEVELOPING MAPS FOR IDEAL TRIANGULATIONS II: POSITIVELY ORIENTED IDEAL TRIANGULATIONS OF CONE-MANIFOLDS

被引:3
|
作者
Casella, Alex [1 ]
Luo, Feng [2 ]
Tillmann, Stephan [1 ]
机构
[1] Univ Sydney, Sch Math & Stat, Sydney, NSW 2006, Australia
[2] Rutgers State Univ, Dept Math, New Brunswick, NJ 08854 USA
基金
美国国家科学基金会; 澳大利亚研究理事会;
关键词
HYPERBOLIC; 3-MANIFOLDS;
D O I
10.1090/proc/13290
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We generalise work of Young-Eun Choi to the setting of ideal triangulations with vertex links of arbitrary genus, showing that the set of all (possibly incomplete) hyperbolic cone-manifold structures realised by positively oriented hyperbolic ideal tetrahedra on a given topological ideal triangulation and with prescribed cone angles at all edges is (if non-empty) a smooth complex manifold of dimension the sum of the genera of the vertex links. Moreover, we show that the complex lengths of a collection of peripheral elements give a local holomorphic parameterisation of this manifold.
引用
收藏
页码:3543 / 3560
页数:18
相关论文
共 14 条
  • [1] Positively oriented ideal triangulations on hyperbolic three-manifolds
    Choi, YE
    TOPOLOGY, 2004, 43 (06) : 1345 - 1371
  • [2] Pseudo-Developing Maps for Ideal Triangulations I: Essential Edges and Generalised Hyperbolic Gluing Equations
    Segerman, Henry
    Tillmann, Stephan
    TOPOLOGY AND GEOMETRY IN DIMENSION THREE: TRIANGULATIONS, INVARIANTS, AND GEOMETRIC STRUCTURES, 2011, 560 : 85 - +
  • [3] Taut ideal triangulations of 3-manifolds
    Lackenby, Marc
    GEOMETRY & TOPOLOGY, 2000, 4 : 369 - 395
  • [4] A Binomial Ideal on Triangulations of 2-Manifolds
    Kashif, Agha
    Raza, Zahid
    PUNJAB UNIVERSITY JOURNAL OF MATHEMATICS, 2020, 52 (05): : 105 - 114
  • [5] Ideal triangulations of hyperbolic 3-manifolds.
    Petronio, C
    BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 2000, 3B (03): : 657 - 672
  • [6] Ideal triangulations of 3-manifolds II; taut and angle structures
    Kang, Ensil
    Rubinstein, J. Hyam
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2005, 5 : 1505 - 1533
  • [7] MINIMUM IDEAL TRIANGULATIONS OF HYPERBOLIC 3-MANIFOLDS
    ADAMS, C
    SHERMAN, W
    DISCRETE & COMPUTATIONAL GEOMETRY, 1991, 6 (02) : 135 - 153
  • [8] Ideal triangulations of pseudo-Anosov mapping tori
    Agol, Ian
    TOPOLOGY AND GEOMETRY IN DIMENSION THREE: TRIANGULATIONS, INVARIANTS, AND GEOMETRIC STRUCTURES, 2011, 560 : 1 - 17
  • [9] A calculus for ideal triangulations of three-manifolds with embedded arcs
    Amendola, G
    MATHEMATISCHE NACHRICHTEN, 2005, 278 (09) : 975 - 994
  • [10] On minimal ideal triangulations of cusped hyperbolic 3-manifolds
    Jaco, William
    Rubinstein, Hyam
    Spreer, Jonathan
    Tillmann, Stephan
    JOURNAL OF TOPOLOGY, 2020, 13 (01) : 308 - 342