Algebraic invariant curves for the Lienard equation

被引:35
作者
Zoladek, H [1 ]
机构
[1] Univ Warsaw, Inst Math, PL-02097 Warsaw, Poland
关键词
D O I
10.1090/S0002-9947-98-02002-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Odani has shown that if deg g less than or equal to deg f then after deleting some trivial cases the polynomial system (x) over dot = y, (y) over dot = -f(x)y - g(x) does not have any algebraic invariant curve. Here we almost completely solve the problem of algebraic invariant curves and algebraic limit cycles of this system for all values of deg f and deg g. We give also a simple presentation of Yablonsky's example of a quartic limit cycle in a quadratic system.
引用
收藏
页码:1681 / 1701
页数:21
相关论文
共 9 条
[1]  
ARNOLD VI, 1985, ITOGI NAUKI TEKHNIKI, V1, P7
[2]   AUTOMORPHISM-GROUPS OF (C,O) AND DIFFERENTIAL-EQUATIONS [J].
CERVEAU, D ;
MOUSSU, R .
BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 1988, 116 (04) :459-488
[3]   THE LIMIT-CYCLE OF THE VAN DER POL EQUATION IS NOT ALGEBRAIC [J].
ODANI, K .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1995, 115 (01) :146-152
[4]  
ODANI K, 1995, INTEGRATION POLYNOMI
[5]  
STROZYNA E, 1996, ANAL NORMAL NILPOTEN
[6]  
Wilson J. C., 1964, CONTRIB DIFF EQNS, V3, P1
[7]  
Yablonskii A. I., 1966, DIFF EQUAT, V2, P335
[8]   QUADRATIC SYSTEMS WITH CENTER AND THEIR PERTURBATIONS [J].
ZOLADEK, H .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1994, 109 (02) :223-273
[9]  
Zoladek H., 1994, TOPOL METHOD NONL AN, V4, P79, DOI DOI 10.12775/TMNA.1994.024