Coefficients of half-integral weight modular forms modulo lj

被引:17
作者
Ahlgren, S [1 ]
Boylan, M [1 ]
机构
[1] Univ Illinois, Dept Math, Urbana, IL 61801 USA
关键词
D O I
10.1007/s00208-004-0555-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Suppose that l greater than or equal to 5 is prime, that j greater than or equal to 0 is an integer, and that F(z) is a half-integral weight modular form with integral Fourier coefficients. We give some general conditions under which the coefficients of F are "well-distributed" modulo l(j). As a consequence, we settle many cases of a classical conjecture of Newman by proving, for each prime power l(j) with l greater than or equal to 5, that the ordinary partition function p(n) takes each value modulo l(j) infinitely often.
引用
收藏
页码:219 / +
页数:23
相关论文
共 23 条
[1]   Arithmetic properties of the partition function [J].
Ahlgren, S ;
Boylan, M .
INVENTIONES MATHEMATICAE, 2003, 153 (03) :487-502
[2]   Congruence properties for the partition function [J].
Ahlgren, S ;
Ono, K .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (23) :12882-12884
[3]   Distribution of the partition function module composite integers M [J].
Ahlgren, S .
MATHEMATISCHE ANNALEN, 2000, 318 (04) :795-803
[4]  
[Anonymous], CONT MATH
[5]  
[Anonymous], 1960, T AM MATH SOC
[6]  
ATKIN AOL, 1968, P LOND MATH SOC, V18, P563
[7]   Coefficients of half-integral weight modular forms (vol 99, pg 164, 2003) [J].
Bruinier, JH ;
Ono, K .
JOURNAL OF NUMBER THEORY, 2004, 104 (02) :378-379
[8]   Coefficients of half-integral weight modular forms [J].
Bruinier, JH ;
Ono, K .
JOURNAL OF NUMBER THEORY, 2003, 99 (01) :164-179
[9]   Nonvanishing modulo l of Fourier coefficients of half-integral weight modular forms [J].
Bruinier, JH .
DUKE MATHEMATICAL JOURNAL, 1999, 98 (03) :595-611
[10]  
DELIGNE P, 1974, ANN SCI ECOLE NORM S, V7, P507