A deep learning approach for ECG-based heartbeat classification for arrhythmia detection

被引:260
|
作者
Sannino, G. [1 ]
De Pietro, G. [1 ]
机构
[1] Natl Res Council Italy CNR, Inst High Performance Comp & Networking ICAR, Via P Castellino 111, Naples, Italy
来源
FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE | 2018年 / 86卷
关键词
Deep learning; ECG classification; Heartbeat classification; Arrhythmia detection; REVISED SCHEME; MORPHOLOGY; ALGORITHM; FEATURES; SIGNAL;
D O I
10.1016/j.future.2018.03.057
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Classification is one of the most popular topics in healthcare and bioinformatics, especially in relation to arrhythmia detection. Arrhythmias are irregularities in the rate or rhythm of the heartbeat which, in some cases, may occur sporadically in a subject's daily life. To capture these infrequent events, a Holter device is usually employed to record long-term ECG data. Therefore, the automatic recognition of abnormal heartbeats from a large amount of ECG data is an important and essential task. In the last two decades, a huge number of methods have been proposed to address the problem of ECG beat classification. At the same time, deep learning has advanced rapidly since the early 2000s and now demonstrates a state-of-the-art performance in various fields. In this paper, we propose a novel deep learning approach for ECG beat classification. We have conducted the experiments on the well-known MIT-BIH Arrhythmia Database, and compared our results with the scientific literature. The final results show that our model is not only more efficient than the state of the art in terms of accuracy, but also competitive in terms of sensitivity and specificity. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:446 / 455
页数:10
相关论文
共 50 条
  • [21] A Deep Learning-Based Algorithm for ECG Arrhythmia Classification
    Espin-Ramos, Daniela
    Alvarado, Vicente
    Valarezo Anazco, Edwin
    Flores, Erick
    Nunez, Bolivar
    Santos, Jose
    Guerrero, Sara
    Aviles-Cedeno, Jonathan
    2023 IEEE 13TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION SYSTEMS, ICPRS, 2023,
  • [22] Deep Learning Approach for Automatic Heartbeat Classification
    Guerra, Roger de T.
    Yamaguchi, Cristina K.
    Stefenon, Stefano F.
    Coelho, Leandro dos S.
    Mariani, Viviana C.
    SENSORS, 2025, 25 (05)
  • [23] Deep Learning Based Patient-Specific Classification of Arrhythmia on ECG signal
    Zhao, Wei
    Hu, Jing
    Jia, Dongya
    Wang, Hongmei
    Li, Zhenqi
    Yan, Cong
    You, Tianyuan
    2019 41ST ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2019, : 1500 - 1503
  • [24] Deep Learning-Based ECG Classification for Arterial Fibrillation Detection
    Irshad, Muhammad Sohail
    Masood, Tehreem
    Jaffar, Arfan
    Rashid, Muhammad
    Akram, Sheeraz
    Aljohani, Abeer
    CMC-COMPUTERS MATERIALS & CONTINUA, 2024, 79 (03): : 4805 - 4824
  • [25] An Attention Based Neural Architecture for Arrhythmia Detection and Classification from ECG Signals
    Mangathayaru, Nimmala
    Rani, Padmaja
    Janaki, Vinjamuri
    Srinivas, Kalyanapu
    Bai, B. Mathura
    Mohan, G. Sai
    Bharadwaj, B. Lalith
    CMC-COMPUTERS MATERIALS & CONTINUA, 2021, 69 (02): : 2425 - 2443
  • [26] Fog-Computing-Based Heartbeat Detection and Arrhythmia Classification Using Machine Learning
    Scire, Alessandro
    Tropeano, Fabrizio
    Anagnostopoulos, Aris
    Chatzigiannakis, Ioannis
    ALGORITHMS, 2019, 12 (02)
  • [27] Adversarial Multi-Task Learning for Robust End-to-End ECG-based Heartbeat Classification
    Shahin, Mostafa
    Oo, Ethan
    Ahmed, Beena
    42ND ANNUAL INTERNATIONAL CONFERENCES OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY: ENABLING INNOVATIVE TECHNOLOGIES FOR GLOBAL HEALTHCARE EMBC'20, 2020, : 341 - 344
  • [28] An ECG Stitching Scheme for Driver Arrhythmia Classification Based on Deep Learning
    Kim, Do Hoon
    Lee, Gwangjin
    Kim, Seong Han
    SENSORS, 2023, 23 (06)
  • [29] ECG Heartbeat Classification Detection Based on WaveNet-LSTM
    Qu, Yuanyuan
    Zhang, Nina
    Meng, Yue
    Qin, Zhiliang
    Lu, Qidong
    Liu, Xiaowei
    2020 IEEE THE 4TH INTERNATIONAL CONFERENCE ON FRONTIERS OF SENSORS TECHNOLOGIES (ICFST 2020), 2020, : 54 - 58
  • [30] Arrhythmia Detection Using ECG-Based Classification with Prioritized Feature Subset Vector-Associated Generative Adversarial Network
    Shaik J.
    Bhavanam S.N.
    SN Computer Science, 4 (5)