A deep learning approach for ECG-based heartbeat classification for arrhythmia detection

被引:260
|
作者
Sannino, G. [1 ]
De Pietro, G. [1 ]
机构
[1] Natl Res Council Italy CNR, Inst High Performance Comp & Networking ICAR, Via P Castellino 111, Naples, Italy
关键词
Deep learning; ECG classification; Heartbeat classification; Arrhythmia detection; REVISED SCHEME; MORPHOLOGY; ALGORITHM; FEATURES; SIGNAL;
D O I
10.1016/j.future.2018.03.057
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Classification is one of the most popular topics in healthcare and bioinformatics, especially in relation to arrhythmia detection. Arrhythmias are irregularities in the rate or rhythm of the heartbeat which, in some cases, may occur sporadically in a subject's daily life. To capture these infrequent events, a Holter device is usually employed to record long-term ECG data. Therefore, the automatic recognition of abnormal heartbeats from a large amount of ECG data is an important and essential task. In the last two decades, a huge number of methods have been proposed to address the problem of ECG beat classification. At the same time, deep learning has advanced rapidly since the early 2000s and now demonstrates a state-of-the-art performance in various fields. In this paper, we propose a novel deep learning approach for ECG beat classification. We have conducted the experiments on the well-known MIT-BIH Arrhythmia Database, and compared our results with the scientific literature. The final results show that our model is not only more efficient than the state of the art in terms of accuracy, but also competitive in terms of sensitivity and specificity. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:446 / 455
页数:10
相关论文
共 50 条
  • [21] Utilizing ECG-Based Heartbeat Classification for Hypertrophic Cardiomyopathy Identification
    Rahman, Quazi Abidur
    Tereshchenko, Larisa G.
    Kongkatong, Matthew
    Abraham, Theodore
    Abraham, M. Roselle
    Shatkay, Hagit
    IEEE TRANSACTIONS ON NANOBIOSCIENCE, 2015, 14 (05) : 505 - 512
  • [22] ECG Arrhythmia Detection with Deep Learning
    Izci, Elif
    Degirmenci, Murside
    Ozdemir, Mehmet Akif
    Akan, Aydin
    2020 28TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2020,
  • [23] A Deep Learning-Based Algorithm for ECG Arrhythmia Classification
    Espin-Ramos, Daniela
    Alvarado, Vicente
    Valarezo Anazco, Edwin
    Flores, Erick
    Nunez, Bolivar
    Santos, Jose
    Guerrero, Sara
    Aviles-Cedeno, Jonathan
    2023 IEEE 13TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION SYSTEMS, ICPRS, 2023,
  • [24] Multi-level CNN Model in ECG-based Heartbeat Classification
    Wang, Shuai
    Wang, Dan
    Yang, Ping
    Zhao, Wenbing
    Wang, Xiaoxi
    BASIC & CLINICAL PHARMACOLOGY & TOXICOLOGY, 2020, 127 : 18 - 19
  • [25] Arrhythmia classification on ECG using Deep Learning
    Rajkumar, A.
    Ganesan, M.
    Lavanya, R.
    2019 5TH INTERNATIONAL CONFERENCE ON ADVANCED COMPUTING & COMMUNICATION SYSTEMS (ICACCS), 2019, : 365 - 369
  • [26] ECG-based heart arrhythmia classification using feature engineering and a hybrid stacked machine learning
    Jahangir, Raiyan
    Islam, Muhammad Nazrul
    Islam, Md. Shofiqul
    Islam, Md. Motaharul
    BMC CARDIOVASCULAR DISORDERS, 2025, 25 (01):
  • [27] Adversarial Multi-Task Learning for Robust End-to-End ECG-based Heartbeat Classification
    Shahin, Mostafa
    Oo, Ethan
    Ahmed, Beena
    42ND ANNUAL INTERNATIONAL CONFERENCES OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY: ENABLING INNOVATIVE TECHNOLOGIES FOR GLOBAL HEALTHCARE EMBC'20, 2020, : 341 - 344
  • [28] CareEdge: A Lightweight Edge Intelligence Framework for ECG-Based Heartbeat Detection
    Zhen, Penghua
    Han, Yubing
    Dong, Anming
    Yu, Jiguo
    2020 INTERNATIONAL CONFERENCE ON IDENTIFICATION, INFORMATION AND KNOWLEDGE IN THE INTERNET OF THINGS (IIKI2020), 2021, 187 : 329 - 334
  • [29] An ECG Stitching Scheme for Driver Arrhythmia Classification Based on Deep Learning
    Kim, Do Hoon
    Lee, Gwangjin
    Kim, Seong Han
    SENSORS, 2023, 23 (06)
  • [30] Deep Learning-Based ECG Arrhythmia Classification: A Systematic Review
    Xiao, Qiao
    Lee, Khuan
    Mokhtar, Siti Aisah
    Ismail, Iskasymar
    Pauzi, Ahmad Luqman bin Md
    Zhang, Qiuxia
    Lim, Poh Ying
    APPLIED SCIENCES-BASEL, 2023, 13 (08):