The construction of Chasma Boreale on Mars

被引:45
|
作者
Holt, J. W. [1 ]
Fishbaugh, K. E. [2 ]
Byrne, S. [3 ]
Christian, S. [1 ,4 ]
Tanaka, K. [5 ]
Russell, P. S. [6 ]
Herkenhoff, K. E. [5 ]
Safaeinili, A. [7 ]
Putzig, N. E. [8 ]
Phillips, R. J. [8 ]
机构
[1] Univ Texas Austin, Inst Geophys, Jackson Sch Geosci, Austin, TX 78758 USA
[2] Smithsonian Natl Air & Space Museum, Washington, DC 20560 USA
[3] Univ Arizona, Lunar & Planetary Lab, Tucson, AZ 85721 USA
[4] Bryn Mawr Coll, Bryn Mawr, PA 19010 USA
[5] US Geol Survey, Astrogeol Sci Ctr, Flagstaff, AZ 86001 USA
[6] Planetary Sci Inst, Tucson, AZ 85719 USA
[7] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA
[8] SW Res Inst, Boulder, CO 80302 USA
关键词
NORTH POLAR-REGION; STRATIGRAPHY; DEPOSITS; HISTORY; ORIGIN;
D O I
10.1038/nature09050
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The polar layered deposits of Mars contain the planet's largest known reservoir of water ice(1,2) and the prospect of revealing a detailed Martian palaeoclimate record(3,4), but the mechanisms responsible for the formation of the dominant features of the north polar layered deposits (NPLD) are unclear, despite decades of debate. Stratigraphic analyses of the exposed portions of Chasma Boreale-a large canyon 500 km long, up to 100 km wide, and nearly 2 km deep-have led most researchers to favour an erosional process for its formation following initial NPLD accumulation. Candidate mechanisms include the catastrophic outburst of water(5), protracted basal melting(6), erosional undercutting(7), aeolian downcutting(7-9) and a combination of these processes(10). Here we use new data from the Mars Reconnaissance Orbiter to show that Chasma Boreale is instead a long-lived, complex feature resulting primarily from non-uniform accumulation of the NPLD. The initial valley that later became Chasma Boreale was matched by a second, equally large valley that was completely filled in by subsequent deposition, leaving no evidence on the surface to indicate its former presence. We further demonstrate that topography existing before the NPLD began accumulating influenced successive episodes of deposition and erosion, resulting in most of the present-day topography. Long-term and large-scale patterns of mass balance achieved through sedimentary processes, rather than catastrophic events, ice flow or highly focused erosion, have produced the largest geomorphic anomaly in the north polar ice of Mars.
引用
收藏
页码:446 / 449
页数:4
相关论文
共 50 条
  • [31] Reconstructing the past climate at Gale crater, Mars, from hydrological modeling of late-stage lakes
    Horvath, David G.
    Andrews-Hanna, Jeffrey C.
    GEOPHYSICAL RESEARCH LETTERS, 2017, 44 (16) : 8196 - 8204
  • [32] Photogeologic Map of the Perseverance Rover Field Site in Jezero Crater Constructed by the Mars 2020 Science Team
    Stack, Kathryn M.
    Williams, Nathan R.
    Calef, Fred, III
    Sun, Vivian Z.
    Williford, Kenneth H.
    Farley, Kenneth A.
    Eide, Sigurd
    Flannery, David
    Hughes, Cory
    Jacob, Samantha R.
    Kah, Linda C.
    Meyen, Forrest
    Molina, Antonio
    Nataf, Cathy Quantin
    Rice, Melissa
    Russell, Patrick
    Scheller, Eva
    Seeger, Christina H.
    Abbey, William J.
    Adler, Jacob B.
    Amundsen, Hans
    Anderson, Ryan B.
    Angel, Stanley M.
    Arana, Gorka
    Atkins, James
    Barrington, Megan
    Berger, Tor
    Borden, Rose
    Boring, Beau
    Brown, Adrian
    Carrier, Brandi L.
    Conrad, Pamela
    Dypvik, Henning
    Fagents, Sarah A.
    Gallegos, Zachary E.
    Garczynski, Brad
    Golder, Keenan
    Gomez, Felipe
    Goreva, Yulia
    Gupta, Sanjeev
    Hamran, Svein-Erik
    Hicks, Taryn
    Hinterman, Eric D.
    Horgan, Briony N.
    Hurowitz, Joel
    Johnson, Jeffrey R.
    Lasue, Jeremie
    Kronyak, Rachel E.
    Liu, Yang
    Madariaga, Juan Manuel
    SPACE SCIENCE REVIEWS, 2020, 216 (08)
  • [33] Sulfur Cycling and Mass Balance at Meridiani, Mars
    Hynek, Brian M.
    McCollom, Thomas M.
    Szynkiewicz, Anna
    GEOPHYSICAL RESEARCH LETTERS, 2019, 46 (21) : 11728 - 11737
  • [34] Aeolian bedrock ridges in Gale crater, Mars
    Bretzfelder, Jordan M.
    Stack, Kathryn M.
    Fraeman, Abigail A.
    Day, Mackenzie
    Dietrich, William E.
    Bryk, Alexander B.
    ICARUS, 2024, 408
  • [35] History of plains resurfacing in the Scandia region of Mars
    Tanaka, Kenneth L.
    Fortezzo, Corey M.
    Hayward, Rosalyn K.
    Rodriguez, J. Alexis P.
    Skinner, James A., Jr.
    PLANETARY AND SPACE SCIENCE, 2011, 59 (11-12) : 1128 - 1142
  • [36] Regional Correlations in the Layered Deposits of Arabia Terra, Mars
    Annex, Andrew M.
    Lewis, Kevin W.
    JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS, 2020, 125 (06)
  • [37] Association of phyllosilicates and the inverted channel in Miyamoto crater, Mars
    Marzo, G. A.
    Roush, T. L.
    Lanza, N. L.
    McGuire, P. C.
    Newsom, H. E.
    Ollila, A. M.
    Wiseman, S. M.
    GEOPHYSICAL RESEARCH LETTERS, 2009, 36
  • [38] Chronology of deposition and alteration in the Mawrth Vallis region, Mars
    Loizeau, D.
    Werner, S. C.
    Mangold, N.
    Bibring, J. -P.
    Vago, J. L.
    PLANETARY AND SPACE SCIENCE, 2012, 72 (01) : 31 - 43
  • [39] Inventory of CO2 available for terraforming Mars
    Jakosky, Bruce M.
    Edwards, Christopher S.
    NATURE ASTRONOMY, 2018, 2 (08): : 634 - 639
  • [40] Gravity aspects for Mars
    Klokocnik, Jaroslav
    Kletetschka, Gunther
    Kostelecky, Jan
    Bezdek, Ales
    ICARUS, 2023, 406