Joint spatial-temporal attention for action recognition

被引:25
|
作者
Yu, Tingzhao [1 ,2 ]
Guo, Chaoxu [1 ,2 ]
Wang, Lingfeng [1 ]
Gu, Huxiang [1 ]
Xiang, Shiming [1 ]
Pan, Chunhong [1 ]
机构
[1] Chinese Acad Sci, Inst Automat, Natl Lab Pattern Recognit, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Sch Comp & Control Engn, Beijing 101408, Peoples R China
基金
中国国家自然科学基金;
关键词
Action recognition; Spatial-Temporal attention; Two-Stage; REPRESENTATION;
D O I
10.1016/j.patrec.2018.07.034
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we propose a novel high-level action representation using joint spatial-temporal attention model, with application to video-based human action recognition. Specifically, to extract robust motion representations of videos, a new spatial attention module based on 3D convolution is proposed, which can pay attention to the salient parts of the spatial areas. For better dealing with long-duration videos, a new bidirectional LSTM based temporal attention module is introduced, which aims to focus on the key video cubes instead of the key video frames of a given video. The spatial-temporal attention network can be jointly trained via a two-stage strategy, which enables us to simultaneously explore the correlation both in spatial and temporal domain. Experimental results on benchmark action recognition datasets demonstrate the effectiveness of our network. (c) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:226 / 233
页数:8
相关论文
共 50 条
  • [41] STCAM: Spatial-Temporal and Channel Attention Module for Dynamic Facial Expression Recognition
    Chen, Weicong
    Zhang, Dong
    Li, Ming
    Lee, Dah-Jye
    IEEE TRANSACTIONS ON AFFECTIVE COMPUTING, 2023, 14 (01) : 800 - 810
  • [42] Human action recognition via multi-task learning base on spatial-temporal feature
    Guo, Wenzhong
    Chen, Guolong
    INFORMATION SCIENCES, 2015, 320 : 418 - 428
  • [43] Two-Stream Collaborative Learning With Spatial-Temporal Attention for Video Classification
    Peng, Yuxin
    Zhao, Yunzhen
    Zhang, Junchao
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2019, 29 (03) : 773 - 786
  • [44] MSAHTA: Mixed Spatial Attention and Hierarchical Temporal Aggregation for Action Recognition
    Feng, Jinyuan
    Yang, Dan
    Ge, Yongxin
    Qin, Xiaolei
    Chen, Yida
    Wang, Yuangan
    2019 IEEE SMARTWORLD, UBIQUITOUS INTELLIGENCE & COMPUTING, ADVANCED & TRUSTED COMPUTING, SCALABLE COMPUTING & COMMUNICATIONS, CLOUD & BIG DATA COMPUTING, INTERNET OF PEOPLE AND SMART CITY INNOVATION (SMARTWORLD/SCALCOM/UIC/ATC/CBDCOM/IOP/SCI 2019), 2019, : 775 - 782
  • [45] Action Recognition by Fusing Spatial-Temporal Appearance and The Local Distribution of Interest Points
    Lu, Mengmeng
    Zhang, Liang
    PROCEEDINGS OF THE 2014 INTERNATIONAL CONFERENCE ON FUTURE COMPUTER AND COMMUNICATION ENGINEERING, 2014, 111 : 75 - 78
  • [46] ST-HViT: spatial-temporal hierarchical vision transformer for action recognition
    Xia, Limin
    Fu, Weiye
    PATTERN ANALYSIS AND APPLICATIONS, 2025, 28 (01)
  • [47] Focal and Global Spatial-Temporal Transformer for Skeleton-Based Action Recognition
    Gao, Zhimin
    Wang, Peitao
    Lv, Pei
    Jiang, Xiaoheng
    Liu, Qidong
    Wang, Pichao
    Xu, Mingliang
    Li, Wanqing
    COMPUTER VISION - ACCV 2022, PT IV, 2023, 13844 : 155 - 171
  • [48] Pyramid Spatial-Temporal Graph Transformer for Skeleton-Based Action Recognition
    Chen, Shuo
    Xu, Ke
    Jiang, Xinghao
    Sun, Tanfeng
    APPLIED SCIENCES-BASEL, 2022, 12 (18):
  • [49] STST: Spatial-Temporal Specialized Transformer for Skeleton-based Action Recognition
    Zhang, Yuhan
    Wu, Bo
    Li, Wen
    Duan, Lixin
    Gan, Chuang
    PROCEEDINGS OF THE 29TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2021, 2021, : 3229 - 3237
  • [50] Human Action Recognition by Fusion of Convolutional Neural Networks and spatial-temporal Information
    Li, Weisheng
    Ding, Yahui
    8TH INTERNATIONAL CONFERENCE ON INTERNET MULTIMEDIA COMPUTING AND SERVICE (ICIMCS2016), 2016, : 255 - 259