Principles of ChIP-seq Data Analysis Illustrated with Examples

被引:0
|
作者
Ambrosini, Giovanna [1 ]
Dreos, Rene [1 ]
Bucher, Philipp [1 ]
机构
[1] Swiss Fed Inst Technol Lausanne EPFL, Swiss Inst Expt Canc Res ISREC, CH-1015 Lausanne, Switzerland
来源
PROCEEDINGS IWBBIO 2014: INTERNATIONAL WORK-CONFERENCE ON BIOINFORMATICS AND BIOMEDICAL ENGINEERING, VOLS 1 AND 2 | 2014年
关键词
ChIP-seq; DNase I hypersensitive sites; transcription factor binding sites; histone marks; bioinformatics analysis; PROTEIN-DNA INTERACTIONS; PROFILES;
D O I
暂无
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Chromatin immunoprecipitation (ChIP) followed by high-throughput sequencing (ChIP-seq) is a powerful method to determine how transcription factors and other chromatin-associated proteins interact with DNA in order to regulate gene transcription. A single ChIP-seq experiment produces large amounts of highly reproducible data. The challenge is to extract knowledge from the data by thoughtful application of appropriate bioinformatics tools. Here we present a concise introduction into ChIP-seq data analysis in the form of a tutorial based on tools developed by our group. We expose biological questions, explain methods and provide guidelines for the interpretation of the results. While this article focuses on ChIP-seq, most of the algorithms and tools we present are applicable to other chromatin profiling assays based on next generation sequencing (NGS) technology as well.
引用
收藏
页码:682 / 694
页数:13
相关论文
共 50 条
  • [21] Genome-Wide Occupancy Analysis by ChIP-chip and ChIP-Seq
    Hao, Hong
    RETINAL DEGENERATIVE DISEASES, 2012, 723 : 753 - 759
  • [22] ChIP-AP: an integrated analysis pipeline for unbiased ChIP-seq analysis
    Suryatenggara, Jeremiah
    Yong, Kol Jia
    Tenen, Danielle E.
    Tenen, Daniel G.
    Bassal, Mahmoud A.
    BRIEFINGS IN BIOINFORMATICS, 2022, 23 (01)
  • [23] Defining bacterial regulons using ChIP-seq
    Myers, Kevin S.
    Park, Dan M.
    Beauchene, Nicole A.
    Kiley, Patricia J.
    METHODS, 2015, 86 : 80 - 88
  • [24] A computational pipeline for comparative ChIP-seq analyses
    Bardet, Anais F.
    He, Qiye
    Zeitlinger, Julia
    Stark, Alexander
    NATURE PROTOCOLS, 2012, 7 (01) : 45 - 61
  • [25] Application of experimentally verified transcription factor binding sites models for computational analysis of ChIP-Seq data
    Victor G Levitsky
    Ivan V Kulakovskiy
    Nikita I Ershov
    Dmitry Yu Oshchepkov
    Vsevolod J Makeev
    T C Hodgman
    Tatyana I Merkulova
    BMC Genomics, 15
  • [26] Processing and analyzing ChIP-seq data: from short reads to regulatory interactions
    Leleu, Marion
    Lefebvre, Gregory
    Rougemont, Jacques
    BRIEFINGS IN FUNCTIONAL GENOMICS, 2010, 9 (5-6) : 466 - 476
  • [27] A comprehensive comparison of tools for differential ChIP-seq analysis
    Steinhauser, Sebastian
    Kurzawa, Nils
    Eils, Roland
    Herrmann, Carl
    BRIEFINGS IN BIOINFORMATICS, 2016, 17 (06) : 953 - 966
  • [28] jMOSAiCS: joint analysis of multiple ChIP-seq datasets
    Zeng, Xin
    Sanalkumar, Rajendran
    Bresnick, Emery H.
    Li, Hongda
    Chang, Qiang
    Keles, Suenduez
    GENOME BIOLOGY, 2013, 14 (04):
  • [29] Application of experimentally verified transcription factor binding sites models for computational analysis of ChIP-Seq data
    Levitsky, Victor G.
    Kulakovskiy, Ivan V.
    Ershov, Nikita I.
    Oshchepkov, Dmitry Yu
    Makeev, Vsevolod J.
    Hodgman, T. C.
    Merkulova, Tatyana I.
    BMC GENOMICS, 2014, 15
  • [30] Extracting transcription factor targets from ChIP-Seq data
    Tuteja, Geetu
    White, Peter
    Schug, Jonathan
    Kaestner, Klaus H.
    NUCLEIC ACIDS RESEARCH, 2009, 37 (17) : e113 - e113