A Physics Based Multiscale Compact Model of p-i-n Avalanche Photodiodes

被引:6
作者
Ahmed, Sheikh Z. [1 ]
Ganguly, Samiran [1 ]
Yuan, Yuan [2 ]
Zheng, Jiyuan [3 ]
Tan, Yaohua [4 ]
Campbell, Joe C. [1 ]
Ghosh, Avik W. [1 ,5 ]
机构
[1] Univ Virginia, Dept Elect & Comp Engn, Charlottesville, VA 22904 USA
[2] Hewlett Packard Enterprise, Hewlett Packard Labs, Milpitas, CA 95035 USA
[3] Tsinghua Univ, Beijing Natl Res Ctr Informat Sci & Technol, Beijing 100084, Peoples R China
[4] Synopsys Inc, Mountain View, CA 94043 USA
[5] Univ Virginia, Dept Phys, Charlottesville, VA 22904 USA
基金
美国国家科学基金会;
关键词
Integrated circuit modeling; Digital alloys; Monte Carlo methods; Computational modeling; Avalanche photodiodes; Data models; Scattering; SPICE; digital alloy; low noise; MONTE-CARLO-SIMULATION; CIRCUIT MODEL; MULTIPLICATION; SENSITIVITY; IONIZATION;
D O I
10.1109/JLT.2021.3068265
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
III-V material based digital alloy Avalanche Photodiodes (APDs) have recently been found to exhibit low noise similar to Silicon APDs. The III-V materials can be chosen to operate at any wavelength in the infrared spectrum. In this work, we present a physics-based SPICE compatible compact model for APDs built from parameters extracted from an Environment-Dependent Tight Binding (EDTB) model calibrated to ab-initio Density Functional Theory (DFT) and Monte Carlo (MC) methods. Using this approach, we can accurately capture the physical characteristics of these APDs in integrated photonics circuit simulations.
引用
收藏
页码:3591 / 3598
页数:8
相关论文
共 32 条
[1]   Modeling tunnel field effect transistors-From interface chemistry to non-idealities to circuit level performance [J].
Ahmed, Sheikh Z. ;
Tan, Yaohua ;
Truesdell, Daniel S. ;
Calhoun, Benton H. ;
Ghosh, Avik W. .
JOURNAL OF APPLIED PHYSICS, 2018, 124 (15)
[2]   A circuit model simulation for separate absorption, grading, charge, and multiplication avalanche photodiodes [J].
Banoushi, A ;
Kardan, MR ;
Naeini, MA .
SOLID-STATE ELECTRONICS, 2005, 49 (06) :871-877
[3]  
Bertone N, 2007, LASER FOCUS WORLD, V43, P69
[4]   Recent Advances in Avalanche Photodiodes [J].
Campbell, Joe C. .
JOURNAL OF LIGHTWAVE TECHNOLOGY, 2016, 34 (02) :278-285
[5]  
Campbell JC, 2008, OPTICAL FIBER TELECOMMUNICATIONS V A: COMPONENTS AND SUBSYSTEMS, P221, DOI 10.1016/B978-0-12-374171-4.00008-3
[6]   PIN avalanche photodiodes model for circuit simulation [J].
Chen, WY ;
Liu, SY .
IEEE JOURNAL OF QUANTUM ELECTRONICS, 1996, 32 (12) :2105-2111
[7]  
Chowdhury MZ, 2019, 2019 1ST INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE IN INFORMATION AND COMMUNICATION (ICAIIC 2019), P4, DOI [10.1109/icaiic.2019.8668981, 10.1109/ICAIIC.2019.8668981]
[8]   Monte Carlo simulation of impact ionization and current multiplication in short GaAs p(+)in(+) diodes [J].
Dunn, GM ;
Rees, GJ ;
David, JPR ;
Plimmer, SA ;
Herbert, DC .
SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 1997, 12 (01) :111-120
[9]  
FORREST SR, 1985, SEMICONDUCT SEMIMET, V22, P329
[10]   A multiscale materials-to-systems modeling of polycrystalline PbSe photodetectors [J].
Ganguly, Samiran ;
Jang, Moon-Hyung ;
Tan, Yaohua ;
Yoo, Sung-Shik ;
Gupta, Mool C. ;
Ghosh, Avik W. .
JOURNAL OF APPLIED PHYSICS, 2019, 126 (14)