Reproducing kernels of Sobolev spaces on Rd and applications to embedding constants and tractability

被引:13
|
作者
Novak, Erich [1 ]
Ullrich, Mario [2 ]
Wozniakowski, Henryk [3 ,4 ]
Zhang, Shun [5 ]
机构
[1] Univ Jena, Math Inst, Ernst Abbe Pl 2, D-07743 Jena, Germany
[2] Johannes Kepler Univ Linz, Inst Anal, Linz, Austria
[3] Columbia Univ, Dept Comp Sci, New York, NY 10027 USA
[4] Univ Warsaw, Inst Appl Math, Ul Banacha 2, PL-02097 Warsaw, Poland
[5] Anhui Univ, Sch Comp Sci & Technol, Hefei 230601, Anhui, Peoples R China
关键词
Reproducing kernels; tractability; Sobolev space;
D O I
10.1142/S0219530518500094
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The standard Sobolev space W-2(s) (R-d), with arbitrary positive integers s and d for which s > d/2, has the reproducing kernel K-d,K-s(x, t) = integral(Rd) Pi(d)(j=1) cos(2 pi(x(j) - t(j))u(j))/1 + Sigma(0<vertical bar alpha vertical bar 1 <= s) Pi(d)(j=1)(2 pi u(j))(2 alpha j) du for all x, t is an element of R-d, where x(j), t(j), u(j), alpha(j) are components of d-variate x, t, u, alpha, and vertical bar alpha vertical bar(1) = Sigma(d)(j=1) alpha(j) with non-negative integers alpha(j). We obtain a more explicit form for the reproducing kernel K-1,K- s and find a closed form for the kernel K-d,K- infinity. Knowing the form of K-d,K- s, we present applications on the best embedding constants between the Sobolev space W-2(s) (R-d) and L-infinity(R-d), and on strong polynomial tractability of integration with an arbitrary probability density. We prove that the best embedding constants are exponentially small in d, whereas worst case integration errors of algorithms using n function values are also exponentially small in d and decay at least like n(-1/2). This yields strong polynomial tractability in the worst case setting for the absolute error criterion.
引用
收藏
页码:693 / 715
页数:23
相关论文
共 50 条
  • [41] Pointwise inequalities in variable Sobolev spaces and applications
    Almeida, Alexandre
    Samko, Stefan
    ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2007, 26 (02): : 179 - 193
  • [42] Numerical Performance of Optimized Frolov Lattices in Tensor Product Reproducing Kernel Sobolev Spaces
    Kacwin, Christopher
    Oettershagen, Jens
    Ullrich, Mario
    Ullrich, Tino
    FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2021, 21 (03) : 849 - 889
  • [43] Boundedness on Hardy-Sobolev Spaces for Hypersingular Marcinkiewicz Integrals with Variable Kernels
    Xiangxing Tao
    Xiao Yu
    Songyan Zhang
    Journal of Inequalities and Applications, 2008
  • [44] Numerical Performance of Optimized Frolov Lattices in Tensor Product Reproducing Kernel Sobolev Spaces
    Christopher Kacwin
    Jens Oettershagen
    Mario Ullrich
    Tino Ullrich
    Foundations of Computational Mathematics, 2021, 21 : 849 - 889
  • [45] REPRODUCING KERNELS OF WEIGHTED POLY-BERGMAN SPACES ON THE UPPER HALF-PLANE
    Ortega, Josue Ramirez
    BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2007, 13 (02): : 345 - 356
  • [46] On a Sufficient Condition for the Existence of Unconditional Bases of Reproducing Kernels in Hilbert Spaces of Entire Functions
    Isaev, K. P.
    Yulmukhametov, R. S.
    LOBACHEVSKII JOURNAL OF MATHEMATICS, 2021, 42 (06) : 1154 - 1165
  • [47] On a Sufficient Condition for the Existence of Unconditional Bases of Reproducing Kernels in Hilbert Spaces of Entire Functions
    K. P. Isaev
    R. S. Yulmukhametov
    Lobachevskii Journal of Mathematics, 2021, 42 : 1154 - 1165
  • [48] On a criterion for the existence of unconditional bases of reproducing kernels in Fock spaces with radial regular weight
    Isaev, K. P.
    Yulmukhametov, R. S.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2023, 519 (02)
  • [49] Compact embedding results of Sobolev spaces and existence of positive solutions to quasilinear equations
    Han, Qi
    BULLETIN DES SCIENCES MATHEMATIQUES, 2017, 141 (01): : 46 - 71
  • [50] On a sufficient condition for the existence of unconditional bases of reproducing kernels in Fock type spaces with nonradial weights
    Isaev, K. P.
    Lutsenko, A. V.
    Yulmukhametov, R. S.
    ANALYSIS AND MATHEMATICAL PHYSICS, 2023, 13 (06)