Characteristics of the (√3 x √3)R30° superstructure of graphite by scanning tunneling microscopy

被引:3
|
作者
An, B
Fukuyama, S
Yokogawa, K
Yoshimura, M
机构
[1] MITI, Chugoku Natl Ind Res Inst, AIST, Hiroshima 7370197, Japan
[2] Toyota Technol Inst, Nagoya, Aichi 4688511, Japan
来源
JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS SHORT NOTES & REVIEW PAPERS | 2000年 / 39卷 / 7B期
关键词
STM; graphite; HOPG; superstructure; Ar-ion bombardment;
D O I
10.1143/JJAP.39.4347
中图分类号
O59 [应用物理学];
学科分类号
摘要
The bias-voltage- and the tunneling-current-dependent scanning tunneling microscopy (STM) images of the (root 3 x root 3)R30 degrees superstructure of graphite formed near defects produced by Ar+-irradiation on highly oriented pyrolytic graphite annealed at 1373 K were investigated. The root 3 x root 3)R30 degrees superstructure of graphite is gradually changed to a triangular structure and the area of the superstructure becomes smaller with increasing bias voltage or decreasing tunneling current, namely, with increasing tip-sample distance. This result indicates that the STM image of the (root 3 x root 3)R30 degrees superstructure of graphite mainly depends on the tip-sample distance. It is suggested that the electronic superstructure induced by the defects on the surface of graphite decays faster than the electronic structure of normal graphite in vacuum.
引用
收藏
页码:4347 / 4350
页数:4
相关论文
共 50 条
  • [31] Observation of a (√3 x √3)R30° reconstruction on O-polar ZnO surfaces
    King, S. T.
    Parihar, S. S.
    Pradhan, K.
    Johnson-Steigelman, H. T.
    Lyman, P. F.
    SURFACE SCIENCE, 2008, 602 (22) : L131 - L134
  • [32] Electronic and crystal structure of the Pt(111)-(√3 x √3)R30°-K system
    Koroteev, Yu. M.
    Chulkov, E. V.
    SURFACE SCIENCE, 2018, 678 : 99 - 105
  • [33] Simultaneous noncontact AFM and STM of Ag:Si(111)-(√3 x √3)R30°
    Sweetman, Adam
    Stannard, Andrew
    Sugimoto, Yoshiaki
    Abe, Masayuki
    Morita, Seizo
    Moriarty, Philip
    PHYSICAL REVIEW B, 2013, 87 (07)
  • [34] Substitutional adsorption geometry for Pb(111)-(√3x√3)R30°-K
    Pan, FM
    Caragiu, M
    Ferralis, N
    Diehl, RD
    SURFACE SCIENCE, 2006, 600 (03) : 537 - 541
  • [35] SCANNING TUNNELING MICROSCOPY ON GRAPHITE AND GOLD
    GUICHAR, GM
    HAN, B
    MORAND, M
    BELKAID, MS
    APPLIED SURFACE SCIENCE, 1993, 65-6 : 71 - 75
  • [36] LEED structure determination of the Ni(111)(√3 x √3)R30°-Sn surface
    Soares, EA
    Bittencourt, C
    Lopes, EL
    de Carvalho, VE
    Woodruff, DP
    SURFACE SCIENCE, 2004, 550 (1-3) : 127 - 132
  • [37] THERMODYNAMIC PROPERTIES OF THE METALLIC SYSTEM Au(111)-(√3 x √3)R30°-Pd
    Chadli, R.
    Kheffache, S.
    Khater, A.
    SURFACE REVIEW AND LETTERS, 2016, 23 (03)
  • [38] Hydrogen chemisorption on Si(111)√3x√3R30°-B passivated surface studied by thermal desorption and scanning tunneling microscopy
    Aoki, Yuki
    Hirayama, Hiroyuki
    SURFACE SCIENCE, 2011, 605 (15-16) : 1397 - 1401
  • [39] Scanning tunneling microscopy and low energy electron diffraction study of the formation of a root3× root3 R30° reconstruction on the hydrogen etched Si(111) 1×1 surface
    Rogers, D.
    Tiedje, T.
    Journal of Vacuum Science & Technology B: Microelectronics Processing and Phenomena, 1997, 15 (05):
  • [40] UHV transmission electron microscopy structure determination of the Si(111)-(√3 × √3)R30° Au surface
    Northwestern Univ, Evanston, United States
    Surf Sci, 1-3 (233-249):