Quantum-Enhanced Data Classification with a Variational Entangled Sensor Network

被引:42
作者
Xia, Yi [1 ]
Li, Wei [2 ]
Zhuang, Quntao [1 ,3 ]
Zhang, Zheshen [1 ,2 ]
机构
[1] Univ Arizona, James C Wyant Coll Opt Sci, Tucson, AZ 85721 USA
[2] Univ Arizona, Dept Mat Sci & Engn, Tucson, AZ 85721 USA
[3] Univ Arizona, Dept Elect & Comp Engn, Tucson, AZ 85721 USA
基金
美国国家科学基金会;
关键词
41;
D O I
10.1103/PhysRevX.11.021047
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Variational quantum circuits (VQCs) built upon noisy intermediate-scale quantum (NISQ) hardware, in conjunction with classical processing, constitute a promising architecture for quantum simulations, classical optimization, and machine learning. However, the required VQC depth to demonstrate a quantum advantage over classical schemes is beyond the reach of available NISQ devices. Supervised learning assisted by an entangled sensor network (SLAEN) is a distinct paradigm that harnesses VQCs trained by classical machine-learning algorithms to tailor multipartite entanglement shared by sensors for solving practically useful data-processing problems. Here, we report the first experimental demonstration of SLAEN and show an entanglement-enabled reduction in the error probability for classification of multidimensional radio-frequency signals. Our work paves a new route for quantum-enhanced data processing and its applications in the NISQ era.
引用
收藏
页数:17
相关论文
共 41 条
[1]   Optical Resonator Biosensors: Molecular Diagnostic and Nanoparticle Detection on an Integrated Platform [J].
Baaske, Martin ;
Vollmer, Frank .
CHEMPHYSCHEM, 2012, 13 (02) :427-436
[2]   Quantum machine learning [J].
Biamonte, Jacob ;
Wittek, Peter ;
Pancotti, Nicola ;
Rebentrost, Patrick ;
Wiebe, Nathan ;
Lloyd, Seth .
NATURE, 2017, 549 (7671) :195-202
[3]   Solving the quantum many-body problem with artificial neural networks [J].
Carleo, Giuseppe ;
Troyer, Matthias .
SCIENCE, 2017, 355 (6325) :602-605
[4]  
Carolan J, 2020, NAT PHYS, V16, P322, DOI 10.1038/s41567-019-0747-6
[5]  
Deng J, 2009, PROC CVPR IEEE, P248, DOI 10.1109/CVPRW.2009.5206848
[6]  
Didier N., ARXIV171205771
[7]   v Machine learning & artificial intelligence in the quantum domain: a review of recent progress [J].
Dunjko, Vedran ;
Briegel, Hans J. .
REPORTS ON PROGRESS IN PHYSICS, 2018, 81 (07)
[8]  
Farhi E., ARXIV14114028
[9]  
Farhi E., ARXIV170306199
[10]  
Fenn A. J., 2000, Lincoln Laboratory Journal, V12, P321