Dicistronic regulation of fluorescent proteins in the budding yeast Saccharomyces cerevisiae

被引:13
|
作者
Edwards, Sarah R. [1 ]
Wandless, Thomas J. [1 ]
机构
[1] Stanford Univ, Dept Chem & Syst Biol, Clark Ctr W350A, Stanford, CA 94305 USA
关键词
Saccharomyces cerevisiae; budding yeast; dicistronic regulation; red fluorescent protein; green fluorescent protein; RIBOSOME ENTRY SITE; INTERNAL INITIATION; VIRUS-RNA; TRANSLATION; EXPRESSION; REPORTER; DOMAIN; CELLS; RED;
D O I
10.1002/yea.1744
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Fluorescent proteins are convenient tools for measuring protein expression levels in the budding yeast Saccharomyces cerevisiae. Co-expression of proteins from distinct vectors has been seen by fluorescence microscopy; however, the expression of two fluorescent proteins on the same vector would allow for monitoring of linked events. We engineered constructs to allow dicistronic expression of red and green fluorescent proteins and found that expression levels of the proteins correlated with their order in the DNA sequence, with the protein encoded by the 5'-gene more highly expressed. To increase expression levels of the second gene, we tested four regulatory elements inserted between the two genes: the IRES sequences for the YAP1 and p150 genes, and the promoters for the TEF1 gene from both S. cerevisiae and Ashbya gossypii. We generated constructs encoding the truncated ADHI promoter driving expression of the red protein, yeast-enhanced Cherry, followed by a regulatory element driving expression of the green protein, yeast-enhanced GFP. Three of the four regulatory elements successfully enhanced expression of the second gene in our dicistronic construct. We have developed a method to express two genes simultaneously from one vector. Both genes are codon-optimized to produce high protein levels in yeast, and the protein products can be visualized by microscopy or flow cytometry. With this method of regulation, the two genes can be driven in a dicistronic manner, with one protein marking cells harbouring the vector and the other protein free to mark any event of interest. Copyright (C) 2009 John Wiley & Sons, Ltd.
引用
收藏
页码:229 / 236
页数:8
相关论文
共 50 条
  • [21] Effect of temperature on replicative aging of the budding yeast Saccharomyces cerevisiae
    Mateusz Molon
    Renata Zadrag-Tecza
    Biogerontology, 2016, 17 : 347 - 357
  • [22] Control of glycolytic gene expression in the budding yeast (Saccharomyces cerevisiae)
    Chambers, A
    Packham, EA
    Graham, IR
    CURRENT GENETICS, 1995, 29 (01) : 1 - 9
  • [23] Synthesis and function of membrane phosphoinositides in budding yeast, Saccharomyces cerevisiae
    Strahl, Thomas
    Thorner, Jeremy
    BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR AND CELL BIOLOGY OF LIPIDS, 2007, 1771 (03): : 353 - 404
  • [24] Regulation of sporulation in the yeast Saccharomyces cerevisiae
    Piekarska, Iga
    Rytka, Joanna
    Rempola, Bozenna
    ACTA BIOCHIMICA POLONICA, 2010, 57 (03) : 241 - 250
  • [25] SPINDLE DYNAMICS AND CELL-CYCLE REGULATION OF DYNEIN IN THE BUDDING YEAST, SACCHAROMYCES-CEREVISIAE
    YEH, E
    SKIBBENS, RV
    CHENG, JW
    SALMON, ED
    BLOOM, K
    JOURNAL OF CELL BIOLOGY, 1995, 130 (03): : 687 - 700
  • [26] Regulation of autophagy in yeast Saccharomyces cerevisiae
    Cebollero, Eduardo
    Reggiori, Fulvio
    BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH, 2009, 1793 (09): : 1413 - 1421
  • [27] Tolerance of budding yeast Saccharomyces cerevisiae to ultra high pressure
    Shibata, M.
    Torigoe, M.
    Matsumoto, Y.
    Yamamoto, M.
    Takizawa, N.
    Hada, Y.
    Mori, Y.
    Takarabe, K.
    Ono, F.
    18TH APS-SCCM AND 24TH AIRAPT, PTS 1-19, 2014, 500
  • [28] The polarity and dynamics of microtubule assembly in the budding yeast Saccharomyces cerevisiae
    Paul S. Maddox
    Kerry S. Bloom
    E. D. Salmon
    Nature Cell Biology, 2000, 2 : 36 - 41
  • [29] Microtubule minus ends are not dynamic in the budding yeast Saccharomyces cerevisiae
    Maddox, P
    Bloom, K
    Salmon, ED
    MOLECULAR BIOLOGY OF THE CELL, 1999, 10 : 376A - 376A
  • [30] Tanshinones extend chronological lifespan in budding yeast Saccharomyces cerevisiae
    Ziyun Wu
    Lixia Song
    Shao Quan Liu
    Dejian Huang
    Applied Microbiology and Biotechnology, 2014, 98 : 8617 - 8628