Learning Convex Terminal Costs for Complexity Reduction in MPC

被引:8
作者
Abdufattokhov, Shokhjakon
Zanon, Mario
Bemporad, Alberto
机构
来源
2021 60TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC) | 2021年
关键词
MODEL-PREDICTIVE CONTROL; MOVE BLOCKING STRATEGIES; ALGORITHM;
D O I
10.1109/CDC45484.2021.9683069
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Despite recent advances in computing hardware and optimization algorithms, solving model predictive control (MPC) problems in real time still poses some technical challenges when long prediction and control horizons are used, due to the presence of several optimization variables and constraints. In this paper, we propose to reduce the computational burden by shortening the prediction and control horizon to a single step while preserving good closed-loop performance. This is achieved by using machine learning techniques to construct a tailored quadratic and convex terminal cost that approximates the cost-to-go function of constrained linear (possibly parameter-dependent) MPC formulations. The potentials of the proposed MPC with Learned Terminal Cost (LTC-MPC) approach is demonstrated in two numerical examples.
引用
收藏
页码:2163 / 2168
页数:6
相关论文
共 25 条
[1]  
Abadi M., 2015, ADV NEURAL INFORM PR
[2]  
Aggarwal C.C., 2018, Neural networks and deep learning, V10, DOI 10.1007/978-3-319-94463-0
[3]   The explicit linear quadratic regulator for constrained systems [J].
Bemporad, A ;
Morari, M ;
Dua, V ;
Pistikopoulos, EN .
AUTOMATICA, 2002, 38 (01) :3-20
[4]  
Bemporad A., 2020, REDUCTION NUMB UNPUB
[6]   Ultra-Fast Stabilizing Model Predictive Control via Canonical Piecewise Affine Approximations [J].
Bemporad, Alberto ;
Oliveri, Alberto ;
Poggi, Tomaso ;
Storace, Marco .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2011, 56 (12) :2877-2891
[7]   Optimizing the end-point state-weighting matrix in model-based predictive control [J].
Bloemen, HHJ ;
van den Boom, TJJ ;
Verbruggen, HB .
AUTOMATICA, 2002, 38 (06) :1061-1068
[8]  
Borrelli F., 2017, P 40 IEEE C DECISION, V1st
[9]   Move blocking strategies in receding horizon control [J].
Cagienard, R. ;
Grieder, P. ;
Kerrigan, E. C. ;
Morari, M. .
JOURNAL OF PROCESS CONTROL, 2007, 17 (06) :563-570
[10]  
Camacho E.F., 1999, SER ADV TXB CONTROL