Brittle fracture to recoverable plasticity: polytypism-dependent nanomechanics in todorokite-like nanobelts

被引:7
作者
Shikder, Md Ruhul Amin [1 ]
Maksud, Mahjabin [1 ]
Vasudevamurthy, Gokul [2 ]
Byles, Bryan W. [3 ]
Cullen, David A. [4 ]
More, Karren L. [5 ]
Pomerantseva, Ekaterina [3 ]
Subramanian, Arunkumar [1 ]
机构
[1] Univ Illinois, Dept Mech & Ind Engn, Chicago, IL 60607 USA
[2] Gen Atom Corp, San Diego, CA USA
[3] Drexel Univ, Dept Mat Sci & Engn, Philadelphia, PA 19104 USA
[4] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA
[5] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA
来源
NANOSCALE ADVANCES | 2019年 / 1卷 / 01期
基金
美国国家科学基金会;
关键词
GRAIN-BOUNDARY; SIC NANOWIRES; MANGANESE; MANIPULATION; DEFORMATION; STRENGTH;
D O I
10.1039/c8na00079d
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Atomic force microscopy (AFM) based nanomechanics experiments involving polytypic todorokite-like manganese dioxide nanobelts reveal varied nanomechanical performance regimes such as brittle fracture, near-brittle fracture, and plastic recovery within the same material system. These nanobelts are synthesized through a layer-to-tunnel material transformation pathway and contain one-dimensional tunnels, which run along their longitudinal axis and are enveloped by mx3 MnO6 octahedral units along their walls. Depending on the extent of material transformation towards a tunneled microstructure, the nanobelts exhibit stacking disorders or polytypism where the value for m ranges from 3 to up to similar to 20 within different cross-sectional regions of the same nanobelt. The observation of multiple nanomechanical performance regimes within a single material system is attributed to a combination of two factors: (a) the extent of stacking disorder or polytypism within the nanobelts, and (b) the loading (or strain) rate of the AFM nanomechanics experiment. Controllable engineering of recoverable plasticity is a particularly beneficial attribute for advancing the mechanical stability of these ceramic materials, which hold promise for insertion in multiple next-generation technological applications that range from electrical energy storage solutions to catalysis.
引用
收藏
页码:357 / 366
页数:10
相关论文
共 32 条
[1]   Electrochemical Performance of α-MnO2 Nanorods/Activated Carbon Hybrid Supercapacitor [J].
Aravindan, V. ;
Reddy, M. V. ;
Madhavi, S. ;
Rao, G. V. Subba ;
Chowdari, B. V. R. .
NANOSCIENCE AND NANOTECHNOLOGY LETTERS, 2012, 4 (07) :724-728
[2]   Atomic-scale observation of parallel development of super elasticity and reversible plasticity in GaAs nanowires [J].
Bao, Peite ;
Wang, Yanbo ;
Cui, Xiangyuan ;
Gao, Qiang ;
Yen, Hung-Wei ;
Liu, Hongwei ;
Yeoh, Wai Kong ;
Liao, Xiaozhou ;
Du, Sichao ;
Tan, H. Hoe ;
Jagadish, Chennupati ;
Zou, Jin ;
Ringer, Simon P. ;
Zheng, Rongkun .
APPLIED PHYSICS LETTERS, 2014, 104 (02)
[3]   The role of electronic and ionic conductivities in the rate performance of tunnel structured manganese oxides in Li-ion batteries [J].
Byles, B. W. ;
Palapati, N. K. R. ;
Subramanian, A. ;
Pomerantseva, E. .
APL MATERIALS, 2016, 4 (04)
[4]   Todorokite-type manganese oxide nanowires as an intercalation cathode for Li-ion and Na-ion batteries [J].
Byles, B. W. ;
West, P. ;
Cullen, D. A. ;
More, K. L. ;
Pomerantseva, E. .
RSC ADVANCES, 2015, 5 (128) :106265-106271
[5]   Improved electrochemical cycling stability of intercalation battery electrodes via control of material morphology [J].
Byles, Bryan W. ;
Clites, Mallory ;
Cullen, David A. ;
More, Karren L. ;
Pomerantseva, Ekaterina .
IONICS, 2019, 25 (02) :493-502
[6]   Tunnel structured manganese oxide nanowires as redox active electrodes for hybrid capacitive deionization [J].
Byles, Bryan W. ;
Cullen, David A. ;
More, Karren L. ;
Pomerantseva, Ekaterina .
NANO ENERGY, 2018, 44 :476-488
[7]   HIGHLY EFFICIENT HETEROGENEOUS PHOTOOXIDATION OF 2-PROPANOL TO ACETONE WITH AMORPHOUS MANGANESE OXIDE CATALYSTS [J].
CAO, H ;
SUIB, SL .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1994, 116 (12) :5334-5342
[8]  
Felbeck D.K., 1984, Strength and Fracture of Engineering Solids
[9]  
Green D.J., 1998, An introduction to Mechanical properties of Ceramics
[10]   Low-temperature in situ large strain plasticity of ceramic SiC nanowires and its atomic-scale mechanism [J].
Han, X. D. ;
Zhang, Y. F. ;
Zheng, K. ;
Zhang, X. N. ;
Zhang, Z. ;
Hao, Y. J. ;
Guo, X. Y. ;
Yuan, J. ;
Wang, Z. L. .
NANO LETTERS, 2007, 7 (02) :452-457