Electrostatic acceleration of helicon plasma using a cusped magnetic field

被引:17
作者
Harada, S. [1 ,2 ]
Baba, T. [1 ]
Uchigashima, A. [1 ]
Yokota, S. [1 ,3 ]
Iwakawa, A. [1 ]
Sasoh, A. [1 ]
Yamazaki, T. [2 ]
Shimizu, H. [2 ]
机构
[1] Nagoya Univ, Dept Aerosp Engn, Nagoya, Aichi 4648603, Japan
[2] Mitsubishi Heavy Ind Co Ltd, Minato Ku, Tokyo 1088215, Japan
[3] Univ Tsukuba, Dept Engn Mech & Energy, Tsukuba, Ibaraki 3058573, Japan
关键词
VX-200 MAGNETOPLASMA THRUSTER; DOUBLE-LAYER; MICROPROBE FACILITIES; HALL THRUSTER; ION-SOURCE; PERFORMANCE; EFFICIENCY; XENON;
D O I
10.1063/1.4900423
中图分类号
O59 [应用物理学];
学科分类号
摘要
The electrostatic acceleration of helicon plasma is investigated using an electrostatic potential exerted between the ring anode at the helicon source exit and an off-axis hollow cathode in the downstream region. In the downstream region, the magnetic field for the helicon source, which is generated by a solenoid coil, is modified using permanent magnets and a yoke, forming an almost magnetic field-free region surrounded by an annular cusp field. Using a retarding potential analyzer, two primary ion energy peaks, where the lower peak corresponds to the space potential and the higher one to the ion beam, are detected in the field-free region. Using argon as the working gas with a helicon power of 1.5kW and a mass flow rate of 0.21 mg/s, the ion beam energy is on the order of the applied acceleration voltage. In particular, with an acceleration voltage lower than 150 V, the ion beam energy even exceeds the applied acceleration voltage by an amount on the order of the electron thermal energy at the exit of the helicon plasma source. The ion beam energy profile strongly depends on the helicon power and the applied acceleration voltage. Since by this method the whole working gas from the helicon plasma source can, in principle, be accelerated, this device can be applied as a noble electrostatic thruster for space propulsion. (C) 2014 AIP Publishing LLC.
引用
收藏
页数:4
相关论文
共 50 条
[1]   Power matching between plasma generation and electrostatic acceleration in helicon electrostatic thruster [J].
Ichihara, D. ;
Nakagawa, Y. ;
Uchigashima, A. ;
Iwakawa, A. ;
Sasoh, A. ;
Yamazaki, T. .
ACTA ASTRONAUTICA, 2017, 139 :157-164
[2]   Influence Mechanism of Magnetic Field and Wave Modes on Helicon Plasma Thruster [J].
Sun, Bin ;
Zhang, Yue ;
Zhou, Cheng ;
Xia, Guangqing ;
Lu, Chang ;
Han, Daoman .
AIAA JOURNAL, 2023, 61 (12) :5264-5276
[3]   Electrostatic ion acceleration across a diverging magnetic field [J].
Ichihara, D. ;
Uchigashima, A. ;
Iwakawa, A. ;
Sasoh, A. .
APPLIED PHYSICS LETTERS, 2016, 109 (05)
[4]   Effects of magnetic field profile near anode on ion acceleration characteristics of a diverging magnetic field electrostatic thruster [J].
Ichihara, D. ;
Iwakawa, A. ;
Sasoh, A. .
JOURNAL OF APPLIED PHYSICS, 2017, 122 (04)
[5]   A linear helicon plasma device with controllable magnetic field gradient [J].
Barada, Kshitish K. ;
Chattopadhyay, P. K. ;
Ghosh, J. ;
Kumar, Sunil ;
Saxena, Y. C. .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2012, 83 (06)
[6]   Operating a magnetic nozzle helicon thruster with strong magnetic field [J].
Takahashi, Kazunori ;
Komuro, Atsushi ;
Ando, Akira .
PHYSICS OF PLASMAS, 2016, 23 (03)
[7]   Study of Density Peaking in a Diverging Magnetic Field Helicon Experiment [J].
Chattopadhyay, P. K. ;
Barada, Kshitish K. ;
Ghosh, J. ;
Sharma, Devendra ;
Saxena, Y. C. .
INTERNATIONAL CONFERENCE ON COMPLEX PROCESSES IN PLASMAS AND NONLINEAR DYNAMICAL SYSTEMS, 2014, 1582 :251-260
[8]   Erosion Measurements in a Low-Power Cusped-Field Plasma Thruster [J].
Gildea, Stephen R. ;
Matlock, Taylor S. ;
Martinez-Sanchez, Manuel ;
Hargus, William A., Jr. .
JOURNAL OF PROPULSION AND POWER, 2013, 29 (04) :906-918
[9]   RF ELECTROMAGNETIC FIELD ABSORPTION INSIDE HELICON ION SOURCE IN NONAXIAL MAGNETIC FIELD [J].
Alexenko, O. V. ;
Miroshnichenko, V. I. ;
Voznyi, V. I. .
EAST EUROPEAN JOURNAL OF PHYSICS, 2015, 2 (01) :77-87
[10]   Acceleration of Rotating Plasma Flows in Crossed Magnetic Fields [J].
Karimov, Alexander R. ;
Murad, Paul A. .
IEEE TRANSACTIONS ON PLASMA SCIENCE, 2017, 45 (07) :1710-1716