Experimental investigation of the impact of elastic turbulence on heat transfer in a serpentine channel

被引:62
作者
Abed, Waleed M. [1 ]
Whalley, Richard D. [1 ,2 ]
Dennis, David J. C. [1 ]
Poole, Robert J. [1 ]
机构
[1] Univ Liverpool, Sch Engn, Brownlow St, Liverpool L69 3GH, Merseyside, England
[2] Newcastle Univ, Sch Mech & Syst Engn, Newcastle Upon Tyne NE1 7RU, Tyne & Wear, England
基金
英国工程与自然科学研究理事会;
关键词
Elastic turbulence; Serpentine channel; Micro-mixing; Convective heat transfer; Viscoelasticity; Shear-thinning effects; Boger fluids; NON-NEWTONIAN FLUIDS; VISCOELASTIC FLUIDS; RECTANGULAR DUCTS; LAMINAR-FLOW; THERMAL-CONDUCTIVITY; POLYMER-SOLUTIONS; RHEOLOGY; INSTABILITY;
D O I
10.1016/j.jnnfm.2016.03.003
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
The characteristics of convective heat transfer and fluid flow within a square cross-section serpentine channel are experimentally studied for two groups of polymeric viscoelastic fluids, shear-thinning and constant-viscosity Boger solutions. The elastic turbulence can be created by the non-linear interaction between elastic stresses generated within the flowing high-molecular-weight polymer solutions and the streamline curvature. In order to confirm elastic turbulence in this geometry, pressure drop across the serpentine channel was measured. The findings indicate that the measurements of non-dimensional pressure-drop increase approximately from 1.48 to 4.82 for viscoelastic solutions compared with the Newtonian fluid over a range of Weissenberg number from 4 to 211. The convective heat transfer enhances due to elastic turbulence by up to 200% for low polymer concentration (dilute) solutions and reaches up to 380% for higher polymer concentration (semi-dilute) solutions under creeping-flow conditions in comparison to that achieved by the equivalent Newtonian fluid flow at low Graetz number (up to 14.6). We propose a modified Weissenberg number which is able to approximately collapse the mean Nusselt number data for each solution group. (C) 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license.
引用
收藏
页码:68 / 78
页数:11
相关论文
共 50 条
  • [41] Investigation of flow and heat transfer of nanofluid in a diverging sinusoidal channel
    Naghibi, M. Falahaty
    Rahimi-Esbo, M.
    Mohammadyari, R.
    Mobini, K.
    INTERNATIONAL JOURNAL OF NANO DIMENSION, 2015, 6 (03) : 241 - 253
  • [42] Experimental investigation on convective heat transfer of magnetic phase change microcapsule suspension
    Huang, Yong
    Xuan, Yimin
    Li, Qiang
    APPLIED THERMAL ENGINEERING, 2012, 47 : 10 - 17
  • [43] Experimental investigation of laminar forced convective heat transfer of Graphene-water nanofluid inside a circular tube
    Akhavan-Zanjani, Hossein
    Saffar-Avval, Majid
    Mansourkiaei, Mohsen
    Sharif, Farhad
    Ahadi, Mohammad
    INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2016, 100 : 316 - 323
  • [44] Experimental investigation of heat transfer and pressure drop characteristics of Al2O3-water nanofluid
    Sahin, Bayram
    Gultekin, Gul Gedik
    Manay, Eyuphan
    Karagoz, Sendogan
    EXPERIMENTAL THERMAL AND FLUID SCIENCE, 2013, 50 : 21 - 28
  • [45] Forced Convective Heat Transfer of MWCNT/Water Nanofluid Under Constant Heat Flux: An Experimental Investigation
    Gupta, Munish
    Kumar, Rajesh
    Arora, Neeti
    Kumar, Sandeep
    Dilbagi, Neeraj
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2016, 41 (02) : 599 - 609
  • [46] Performance of serpentine channel based Li-ion battery thermal management system: An experimental investigation
    Ibrahim, Amier
    Guo, Jian
    Wang, Yiwei
    Zheng, Yaodong
    Lei, Bo
    Jiang, Fangming
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2020, 44 (13) : 10023 - 10043
  • [47] Experimental and numerical investigation of heat transfer enhancement in double coil heat exchanger
    Najm, Ali
    Azzawi, Itimad D. J.
    Karim, Abdul Mun'em A.
    JOURNAL OF THERMAL ENGINEERING, 2024, 10 (01): : 62 - 77
  • [48] An experimental and numerical investigation of heat transfer enhancement in annular microchannel heat sinks
    Liu, Huan-ling
    Qi, Dong-hao
    Shao, Xiao-dong
    Wang, Wei-dong
    INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2019, 142 : 106 - 120
  • [49] Numerical investigation of convective heat transfer and pressure drop in a corrugated heat exchanger channel
    Islamoglu, Y
    Parmaksizoglu, C
    APPLIED THERMAL ENGINEERING, 2004, 24 (01) : 141 - 147
  • [50] An experimental investigation on the heat transfer and pressure drop characteristics of nanofluid flowing in microchannel heat sink with multiple zigzag flow channel structures
    Duangthongsuk, Weerapun
    Wongwises, Somchai
    EXPERIMENTAL THERMAL AND FLUID SCIENCE, 2017, 87 : 30 - 39