Experimental investigation of the impact of elastic turbulence on heat transfer in a serpentine channel

被引:65
作者
Abed, Waleed M. [1 ]
Whalley, Richard D. [1 ,2 ]
Dennis, David J. C. [1 ]
Poole, Robert J. [1 ]
机构
[1] Univ Liverpool, Sch Engn, Brownlow St, Liverpool L69 3GH, Merseyside, England
[2] Newcastle Univ, Sch Mech & Syst Engn, Newcastle Upon Tyne NE1 7RU, Tyne & Wear, England
基金
英国工程与自然科学研究理事会;
关键词
Elastic turbulence; Serpentine channel; Micro-mixing; Convective heat transfer; Viscoelasticity; Shear-thinning effects; Boger fluids; NON-NEWTONIAN FLUIDS; VISCOELASTIC FLUIDS; RECTANGULAR DUCTS; LAMINAR-FLOW; THERMAL-CONDUCTIVITY; POLYMER-SOLUTIONS; RHEOLOGY; INSTABILITY;
D O I
10.1016/j.jnnfm.2016.03.003
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
The characteristics of convective heat transfer and fluid flow within a square cross-section serpentine channel are experimentally studied for two groups of polymeric viscoelastic fluids, shear-thinning and constant-viscosity Boger solutions. The elastic turbulence can be created by the non-linear interaction between elastic stresses generated within the flowing high-molecular-weight polymer solutions and the streamline curvature. In order to confirm elastic turbulence in this geometry, pressure drop across the serpentine channel was measured. The findings indicate that the measurements of non-dimensional pressure-drop increase approximately from 1.48 to 4.82 for viscoelastic solutions compared with the Newtonian fluid over a range of Weissenberg number from 4 to 211. The convective heat transfer enhances due to elastic turbulence by up to 200% for low polymer concentration (dilute) solutions and reaches up to 380% for higher polymer concentration (semi-dilute) solutions under creeping-flow conditions in comparison to that achieved by the equivalent Newtonian fluid flow at low Graetz number (up to 14.6). We propose a modified Weissenberg number which is able to approximately collapse the mean Nusselt number data for each solution group. (C) 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license.
引用
收藏
页码:68 / 78
页数:11
相关论文
共 47 条
[1]   Numerical and experimental investigation of heat transfer and fluid flow characteristics in a micro-scale serpentine channel [J].
Abed, Waleed M. ;
Whalley, Richard D. ;
Dennis, David J. C. ;
Poole, Robert J. .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2015, 88 :790-802
[2]  
[Anonymous], 1975, RHEOMETRY
[3]  
Asadi M., 2011, BEET SUGAR HDB
[4]  
Barnes HA, 1989, An introduction to rheology, V3
[5]   Turbulent flows in highly elastic wormlike micelles [J].
Beaumont, Julien ;
Louvet, Nicolas ;
Divoux, Thibaut ;
Fardin, Marc-Antoine ;
Bodiguel, Hugues ;
Lerouge, Sandra ;
Manneville, Sebastien ;
Colin, Annie .
SOFT MATTER, 2013, 9 (03) :735-749
[6]  
Bird R. B., 1987, FLUID MECH-SOV RES, V2nd
[7]   HIGHLY ELASTIC CONSTANT-VISCOSITY FLUID [J].
BOGER, DV .
JOURNAL OF NON-NEWTONIAN FLUID MECHANICS, 1977, 3 (01) :87-91
[8]   Chaotic flow and efficient mixing in a microchannel with a polymer solution [J].
Burghelea, Teodor ;
Segre, Enrico ;
Bar-Joseph, Israel ;
Groisman, Alex ;
Steinberg, Victor .
Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 2004, 69 (6 2) :066305-1
[9]  
Carlo D. D., 2009, LAB CHIP, V9, P3038, DOI DOI 10.1039/B912547G
[10]  
Casanellas L., SOFT MATTER IN PRESS