Quantitative study of the effects of surface ligand concentration on CdSe nanocrystal photoluminescence

被引:236
作者
Munro, Andrea M. [1 ]
Jen-La Plante, Ilan [1 ]
Ng, Marsha S. [1 ]
Ginger, David S. [1 ]
机构
[1] Univ Washington, Dept Chem, Seattle, WA 98195 USA
关键词
D O I
10.1021/jp068733e
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We study the impact of surface chemistry on the photoluminescence (PL) quantum yield of CdSe core, CdSe/CdS core/shell, and CdSe/CdZnS/ZnS core/shell/shell nanocrystals prepared by multiple synthetic routes. We expose as-synthesized particles to varying concentrations of n-alkylamine and n-alkanethiol ligands and verify that the addition of n-alkanethiols to CdSe and CdSe/CdS nanocrystal solutions quenches their PL. We also show that the addition of n-alkylamines to nanocrystal solutions can increase or decrease nanocrystal PL, an effect that depends on the concentration of both nanocrystals and ligands. We demonstrate the importance of considering the nanocrystal concentration when fitting ligand binding curves, and show that common solvent impurities can affect the PL and ligand binding data. While alkanethiols quench CdSe nanocrystals prepared using multiple synthetic procedures, we find the exact shape of the quenching curve depends on the synthetic route chosen. We emphasize that the ligand binding data extracted from PL quenching curves are contingent on the assumptions made during fitting. By fitting our PL quenching curves to a Langmuir isotherm and accounting for the particle surface sites, we estimate a lower limit for the equilibrium CdSe-alkanethiol binding constant on the order of 10(9) M-1 with different numbers of thiol binding sites depending on the method of nanocrystal synthesis.
引用
收藏
页码:6220 / 6227
页数:8
相关论文
共 44 条
[1]  
Armarego W.L. F., 1996, PURIFICATION LAB CHE, V4th
[2]   Semiconductor nanocrystals as fluorescent biological labels [J].
Bruchez, M ;
Moronne, M ;
Gin, P ;
Weiss, S ;
Alivisatos, AP .
SCIENCE, 1998, 281 (5385) :2013-2016
[3]   The effects of chemisorption on the luminescence of CdSe quantum dots [J].
Bullen, C ;
Mulvaney, P .
LANGMUIR, 2006, 22 (07) :3007-3013
[4]   Quantum dot bioconjugates for ultrasensitive nonisotopic detection [J].
Chan, WCW ;
Nie, SM .
SCIENCE, 1998, 281 (5385) :2016-2018
[5]   Electroluminescence from single monolayers of nanocrystals in molecular organic devices [J].
Coe, S ;
Woo, WK ;
Bawendi, M ;
Bulovic, V .
NATURE, 2002, 420 (6917) :800-803
[6]  
COLVIN VL, 1994, NATURE, V370, P354, DOI 10.1038/370354a0
[7]   (CdSe)ZnS core-shell quantum dots: Synthesis and characterization of a size series of highly luminescent nanocrystallites [J].
Dabbousi, BO ;
RodriguezViejo, J ;
Mikulec, FV ;
Heine, JR ;
Mattoussi, H ;
Ober, R ;
Jensen, KF ;
Bawendi, MG .
JOURNAL OF PHYSICAL CHEMISTRY B, 1997, 101 (46) :9463-9475
[8]   In vivo cancer targeting and imaging with semiconductor quantum dots [J].
Gao, XH ;
Cui, YY ;
Levenson, RM ;
Chung, LWK ;
Nie, SM .
NATURE BIOTECHNOLOGY, 2004, 22 (08) :969-976
[9]   Stability and quantum yield effects of small molecule additives on solutions of semiconductor nanoparticles [J].
Gaunt, JA ;
Knight, AE ;
Windsor, SA ;
Chechik, V .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2005, 290 (02) :437-443
[10]   Photoinduced electron transfer from conjugated polymers to CdSe nanocrystals [J].
Ginger, DS ;
Greenham, NC .
PHYSICAL REVIEW B, 1999, 59 (16) :10622-10629