ON BOUNDARY VALUE PROBLEMS WITH PRESCRIBED NUMBER OF ZEROES OF SOLUTIONS

被引:2
作者
Ronto, A. [1 ]
Ronto, M. [2 ]
Shchobak, N. [3 ,4 ]
机构
[1] Czech Acad Sci, Inst Math, Zizkova 22, Brno 61662, Czech Republic
[2] Univ Miskolc, Inst Math, H-3515 Miskolc, Hungary
[3] Brno Univ Technol, Fac Business & Management, Kolejni 2906-4, Brno 61200, Czech Republic
[4] Uzhgorod Natl Univ, 14 Univ Ska St, UA-88000 Uzhgorod, Ukraine
关键词
Emden-Fowler equation; model-type boundary conditions; successive approximations; prescribed number of zeroes;
D O I
10.18514/MMN.2017.2329
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show how appropriate parametrisation technique and successive approximations can help to investigate solutions of Emden-Fowler type equations with a given number of zeroes. The technique can be efficiently applied for more general equations with non-linearities involving absolute value signs and various types of boundary conditions.
引用
收藏
页码:431 / 452
页数:22
相关论文
共 22 条
[1]  
[Anonymous], 2015, TATRA MT PUBL, DOI DOI 10.1515/TMMP-2015-0036
[2]  
Astashova V. I., 2015, J MATH SCI, V205, P733, DOI [10.1007/s10958-015-2279-7, DOI 10.1007/S10958-015-2279-7]
[3]  
Capietto A., 1994, TOPOL METHOD NONL AN, V3, P81
[4]  
Capietto A, 1995, TOPOL METHOD NONL AN, V6, P175
[5]  
Gritsans A., 2006, MATH MODEL ANAL, V11, P243
[6]   Non-even positive solutions of the Emden-Fowler equations with sign-changing weights [J].
Kajikiya, Ryuji .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2013, 143 (03) :631-642
[7]   NON-EVEN LEAST ENERGY SOLUTIONS OF THE EMDEN-FOWLER EQUATION [J].
Kajikiya, Ryuji .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2012, 140 (04) :1353-1362
[8]  
Kiguradze I. T., 1993, Mathematics and its Applications (Soviet Series), V89
[9]  
Mawhin J., 1979, EXPOSITORY LECT CBMS, V40
[10]   RADIAL SOLUTIONS OF DELTA-U+F(U)=0 WITH PRESCRIBED NUMBERS OF ZEROS [J].
MCLEOD, K ;
TROY, WC ;
WEISSLER, FB .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1990, 83 (02) :368-378