A review of research on hematite as anode material for lithium-ion batteries

被引:37
作者
Zheng, Xiaodong [1 ,2 ]
Li, Jianlong [1 ]
机构
[1] Qingdao Univ Sci & Technol, Coll Chem Engn, Qingdao 266042, Peoples R China
[2] Binzhou Univ, Dept Chem Engn, Binzhou 256603, Peoples R China
关键词
Lithium-ion batteries; Anode; Hematite; IMPROVED ELECTROCHEMICAL PERFORMANCE; SIZED FE2O3-LOADED CARBON; IRON-OXIDE NANOPARTICLES; ONE-POT SYNTHESIS; RATE CAPABILITY; HIGH-CAPACITY; HYDROTHERMAL SYNTHESIS; FE2O3; NANOPARTICLES; ELECTRODE MATERIALS; FACILE SYNTHESIS;
D O I
10.1007/s11581-014-1262-5
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Hematite (alpha-Fe2O3) nanomaterials have been investigated intensively as a promising anode material for Li-ion batteries due to their advantages such as high theoretical capacity, low cost, environmental friendliness, high resistance to corrosion, etc. However, their practical application is hampered by poor capacity retention, low Coulombic efficiency, and poor high-rate capacity. To overcome these drawbacks, many effective works have been proposed. This review focuses first on the present status of alpha-Fe2O3 nanomaterials in the field of Li-ion batteries including their features, synthesized methods, modification, application and then on their near future development.
引用
收藏
页码:1651 / 1663
页数:13
相关论文
共 50 条
  • [21] Synthetic hureaulite as anode material for lithium-ion batteries
    Pan, Meng-Yao
    Lu, Si-Tong
    Li, Yan-Yan
    Fan, Yang
    JOURNAL OF APPLIED ELECTROCHEMISTRY, 2023, 53 (05) : 1015 - 1022
  • [22] Synthetic hureaulite as anode material for lithium-ion batteries
    Meng-Yao Pan
    Si-Tong Lu
    Yan-Yan Li
    Yang Fan
    Journal of Applied Electrochemistry, 2023, 53 : 1015 - 1022
  • [23] Magnesium Sulphide as Anode Material for Lithium-Ion Batteries
    Helen, M.
    Fichtner, Maximilian
    ELECTROCHIMICA ACTA, 2015, 169 : 180 - 185
  • [24] Aluminum: An underappreciated anode material for lithium-ion batteries
    Chang, Xinghua
    Xie, Zewei
    Liu, Zhiliang
    Zheng, Xinyao
    Zheng, Jie
    Li, Xingguo
    ENERGY STORAGE MATERIALS, 2020, 25 : 93 - 99
  • [25] Uniform hematite nanocapsules based on an anode material for lithium ion batteries
    Kim, Hyun Sik
    Piao, Yuanzhe
    Kang, Soon Hyung
    Hyeon, Taeghwan
    Sung, Yung-Eun
    ELECTROCHEMISTRY COMMUNICATIONS, 2010, 12 (03) : 382 - 385
  • [26] Carbon Allotropes as Anode Material for Lithium-Ion Batteries
    Rajkamal, A.
    Thapa, Ranjit
    ADVANCED MATERIALS TECHNOLOGIES, 2019, 4 (10):
  • [27] ZnFe2O4-nanocrystal-assembled microcages as an anode material for high performance lithium-ion batteries
    Wang, Chundong
    Li, Yi
    Ruan, Yunjun
    Jiang, Jianjun
    Wu, Qi-Hui
    MATERIALS TODAY ENERGY, 2017, 3 : 1 - 8
  • [28] Research Progress on Lithium Titanate as Anode Material in Lithium-ion Battery
    Yi, Tan
    Bing, Xue
    JOURNAL OF INORGANIC MATERIALS, 2018, 33 (05) : 475 - 482
  • [29] Lithium Germanate (Li2GeO3): A High-Performance Anode Material for Lithium-Ion Batteries
    Rahman, Md Mokhlesur
    Sultana, Irin
    Yang, Tianyu
    Chen, Zhiqiang
    Sharma, Neeraj
    Glushenkov, Alexey M.
    Chen, Ying
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2016, 55 (52) : 16059 - 16063
  • [30] Advances of lithium-ion batteries anode materials-A review
    Hossain, Md. Helal
    Chowdhury, Mohammad Asaduzzaman
    Hossain, Nayem
    Islam, Md. Aminul
    Mobarak, Md Hosne
    CHEMICAL ENGINEERING JOURNAL ADVANCES, 2023, 16