A review of research on hematite as anode material for lithium-ion batteries

被引:38
作者
Zheng, Xiaodong [1 ,2 ]
Li, Jianlong [1 ]
机构
[1] Qingdao Univ Sci & Technol, Coll Chem Engn, Qingdao 266042, Peoples R China
[2] Binzhou Univ, Dept Chem Engn, Binzhou 256603, Peoples R China
关键词
Lithium-ion batteries; Anode; Hematite; IMPROVED ELECTROCHEMICAL PERFORMANCE; SIZED FE2O3-LOADED CARBON; IRON-OXIDE NANOPARTICLES; ONE-POT SYNTHESIS; RATE CAPABILITY; HIGH-CAPACITY; HYDROTHERMAL SYNTHESIS; FE2O3; NANOPARTICLES; ELECTRODE MATERIALS; FACILE SYNTHESIS;
D O I
10.1007/s11581-014-1262-5
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Hematite (alpha-Fe2O3) nanomaterials have been investigated intensively as a promising anode material for Li-ion batteries due to their advantages such as high theoretical capacity, low cost, environmental friendliness, high resistance to corrosion, etc. However, their practical application is hampered by poor capacity retention, low Coulombic efficiency, and poor high-rate capacity. To overcome these drawbacks, many effective works have been proposed. This review focuses first on the present status of alpha-Fe2O3 nanomaterials in the field of Li-ion batteries including their features, synthesized methods, modification, application and then on their near future development.
引用
收藏
页码:1651 / 1663
页数:13
相关论文
共 109 条
[1]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[2]   Evaluating the performance of nanostructured materials as lithium-ion battery electrodes [J].
Armstrong, Mark J. ;
O'Dwyer, Colm ;
Macklin, William J. ;
Holmes, Justin. D. .
NANO RESEARCH, 2014, 7 (01) :1-62
[3]   Nanocomposites of hematite (α-Fe2O3) nanospindles with crumpled reduced graphene oxide nanosheets as high-performance anode material for lithium-ion batteries [J].
Bai, Song ;
Chen, Shuangqiang ;
Shen, Xiaoping ;
Zhu, Guoxing ;
Wang, Guoxiu .
RSC ADVANCES, 2012, 2 (29) :10977-10984
[4]   Binder-free, self-standing films of iron oxide nanoparticles deposited on ionic liquid functionalized carbon nanotubes for lithium-ion battery anodes [J].
Bak, Bo Mee ;
Kim, Sung-Kon ;
Park, Ho Seok .
MATERIALS CHEMISTRY AND PHYSICS, 2014, 144 (03) :396-401
[5]   Fully reversible homogeneous and heterogeneous Li storage in RuO2 with high capacity [J].
Balaya, P ;
Li, H ;
Kienle, L ;
Maier, J .
ADVANCED FUNCTIONAL MATERIALS, 2003, 13 (08) :621-625
[6]   Ferrocene as precursor for carbon-coated α-Fe2O3 nano-particles for rechargeable lithium batteries [J].
Brandt, A. ;
Balducci, A. .
JOURNAL OF POWER SOURCES, 2013, 230 :44-49
[7]   α-Fe2O3/single-walled carbon nanotube hybrid films as high-performance anodes for rechargeable lithium-ion batteries [J].
Cao, Zeyuan ;
Wei, Bingqing .
JOURNAL OF POWER SOURCES, 2013, 241 :330-340
[8]   1D hollow α-Fe2O3 electrospun nanofibers as high performance anode material for lithium ion batteries [J].
Chaudhari, Sudeshna ;
Srinivasan, Madhavi .
JOURNAL OF MATERIALS CHEMISTRY, 2012, 22 (43) :23049-23056
[9]   α-Fe2O3 nanoparticles anchored on graphene with 3D quasi-laminated architecture: in situ wet chemistry synthesis and enhanced electrochemical performance for lithium ion batteries [J].
Chen, Dezhi ;
Wei, Wei ;
Wang, Ruining ;
Zhu, Jingchao ;
Guo, Lin .
NEW JOURNAL OF CHEMISTRY, 2012, 36 (08) :1589-1595
[10]   A facile hydrothermal route to iron(III) oxide with conductive additives as composite anode for lithium ion batteries [J].
Chen, Gen ;
Rodriguez, Rodrigo ;
Fei, Ling ;
Xu, Yun ;
Deng, Shuguang ;
Smirnov, Sergei ;
Luo, Hongmei .
JOURNAL OF POWER SOURCES, 2014, 259 :227-232