Research on 3-D Laser Point Cloud Recognition Based on Depth Neural Network

被引:0
|
作者
Yu, Fan [1 ]
Wei, Yanxi [1 ]
Yu, Haige [1 ]
机构
[1] Xian Technol Univ, Sch Comp Sci & Engn, Xian 710021, Shaanxi, Peoples R China
来源
CYBER SECURITY INTELLIGENCE AND ANALYTICS | 2020年 / 928卷
关键词
Point cloud; Convolution neural network; Lidar; Depth network;
D O I
10.1007/978-3-030-15235-2_197
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Typical convolution architectures require fairly conventional input data formats, such as image grids or three-dimensional pixels, to show shared weights and other kernel optimizations. Because point clouds and grids are not typical formats, most researchers usually convert these data into conventional three-dimensional pixel grids or picture sets before providing them to deep-net architectures. However, this data representation transformation presents unnecessary result data and introduces the natural invariance of quantified workpiece fuzzy data. For this reason, we focus on using a different simple point cloud input representation for three-dimensional geometry, and named our deep network as point network. Point cloud is a simple and unified structure, which avoids the combination of irregularity and complex grids, so it is easier to learn. This topic takes point cloud as input directly, and outputs the whole input classification label or every part label of each point input. In the basic settings, each point is represented by three coordinates (x, y, z), and additional dimensions can be added by calculating normals and other local or global characteristics.
引用
收藏
页码:1416 / 1420
页数:5
相关论文
共 50 条
  • [41] A machining feature recognition approach based on hierarchical neural network for multi-feature point cloud models
    Yao, Xinhua
    Wang, Di
    Yu, Tao
    Luan, Congcong
    Fu, Jianzhong
    JOURNAL OF INTELLIGENT MANUFACTURING, 2023, 34 (06) : 2599 - 2610
  • [42] MFPointNet: A Point Cloud-Based Neural Network Using Selective Downsampling Layer for Machining Feature Recognition
    Lei, Ruoshan
    Wu, Hongjin
    Peng, Yibing
    MACHINES, 2022, 10 (12)
  • [43] Fuzzy Neighborhood Learning for Deep 3-D Segmentation of Point Cloud
    Zhong, Mingyang
    Li, Chaojie
    Liu, Liangchen
    Wen, Jiahui
    Ma, Jingwei
    Yu, Xinghuo
    IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2020, 28 (12) : 3181 - 3192
  • [44] Blind Projection-based 3D Point Cloud Quality Assessment Method using a Convolutional Neural Network
    Bourbia, Salima
    Karine, Ayoub
    Chetouani, Aladine
    El Hassouni, Mohammed
    PROCEEDINGS OF THE 17TH INTERNATIONAL JOINT CONFERENCE ON COMPUTER VISION, IMAGING AND COMPUTER GRAPHICS THEORY AND APPLICATIONS (VISAPP), VOL 4, 2022, : 518 - 525
  • [45] A machining feature recognition approach based on hierarchical neural network for multi-feature point cloud models
    Xinhua Yao
    Di Wang
    Tao Yu
    Congcong Luan
    Jianzhong Fu
    Journal of Intelligent Manufacturing, 2023, 34 : 2599 - 2610
  • [46] PointNetGeM: Simple and Efficient Point Cloud Based Network for Place Recognition
    Wen, Keli
    Zhang, Ruonan
    Li, Ge
    2022 IEEE INTERNATIONAL CONFERENCE ON VISUAL COMMUNICATIONS AND IMAGE PROCESSING (VCIP), 2022,
  • [47] APFN: Adaptive Perspective-Based Fusion Network for 3-D Place Recognition
    Zhu, Jianxiang
    Yang, Keni
    Zhang, Yangchun
    Peng, Yan
    Peng, Yaxin
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2024, 73
  • [48] PRINCIPAL CURVATURE OF POINT CLOUD FOR 3D SHAPE RECOGNITION
    Lev, Justin
    Lim, Joo Hwee
    Ouarti, Nizar
    2017 24TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2017, : 610 - 614
  • [49] Grid Structure-Based Pipe Recognition from 3D Point Cloud
    Kim, Sang Woo
    Lee, No Jun
    Kwon, Ki-Youn
    TRANSACTIONS OF THE KOREAN SOCIETY OF MECHANICAL ENGINEERS A, 2024, 48 (06) : 405 - 411
  • [50] Background-Aware 3-D Point Cloud Segmentation With Dynamic Point Feature Aggregation
    Chen, Jiajing
    Kakillioglu, Burak
    Velipasalar, Senem
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60