Research on 3-D Laser Point Cloud Recognition Based on Depth Neural Network

被引:0
|
作者
Yu, Fan [1 ]
Wei, Yanxi [1 ]
Yu, Haige [1 ]
机构
[1] Xian Technol Univ, Sch Comp Sci & Engn, Xian 710021, Shaanxi, Peoples R China
来源
CYBER SECURITY INTELLIGENCE AND ANALYTICS | 2020年 / 928卷
关键词
Point cloud; Convolution neural network; Lidar; Depth network;
D O I
10.1007/978-3-030-15235-2_197
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Typical convolution architectures require fairly conventional input data formats, such as image grids or three-dimensional pixels, to show shared weights and other kernel optimizations. Because point clouds and grids are not typical formats, most researchers usually convert these data into conventional three-dimensional pixel grids or picture sets before providing them to deep-net architectures. However, this data representation transformation presents unnecessary result data and introduces the natural invariance of quantified workpiece fuzzy data. For this reason, we focus on using a different simple point cloud input representation for three-dimensional geometry, and named our deep network as point network. Point cloud is a simple and unified structure, which avoids the combination of irregularity and complex grids, so it is easier to learn. This topic takes point cloud as input directly, and outputs the whole input classification label or every part label of each point input. In the basic settings, each point is represented by three coordinates (x, y, z), and additional dimensions can be added by calculating normals and other local or global characteristics.
引用
收藏
页码:1416 / 1420
页数:5
相关论文
共 50 条
  • [1] Research on Target Recognition Method Based on Laser Point Cloud Data
    Yu, Fan
    Wei, Yanxi
    Yu, Haige
    CYBER SECURITY INTELLIGENCE AND ANALYTICS, 2020, 928 : 1305 - 1310
  • [2] Research on Target Recognition and Tracking Based on 3D Laser Point Cloud
    Xu G.
    Niu H.
    Guo C.
    Su H.
    Xu, Guoyan (xuguoyan@buaa.edu.cn), 2020, SAE-China (42): : 38 - 46
  • [3] 3-D OBJECT RECOGNITION FROM POINT CLOUD DATA
    Smith, W.
    Walker, A. S.
    Zhang, B.
    ISPRS HANNOVER WORKSHOP 2011: HIGH-RESOLUTION EARTH IMAGING FOR GEOSPATIAL INFORMATION, 2011, 39-4 (W19): : 353 - 358
  • [4] Shape Recognition of Plant Equipment from 3-D Scanned Point Cloud Data Using a Convolutional Neural Network
    Kim, Byung Chul
    TRANSACTIONS OF THE KOREAN SOCIETY OF MECHANICAL ENGINEERS A, 2018, 42 (09) : 863 - 869
  • [5] 3-D Point Cloud Registration Using Convolutional Neural Networks
    Chang, Wen-Chung
    Van-Toan Pham
    APPLIED SCIENCES-BASEL, 2019, 9 (16):
  • [6] 3D Face Point Cloud Reconstruction and Recognition Using Depth Sensor
    Wang, Cheng-Wei
    Peng, Chao-Chung
    SENSORS, 2021, 21 (08)
  • [7] DEEP LEARNING ON POINT CLOUD FOR 3D CLASSIFICATION BASED ON SPIKING NEURAL NETWORK
    Zhang Silin
    2022 19TH INTERNATIONAL COMPUTER CONFERENCE ON WAVELET ACTIVE MEDIA TECHNOLOGY AND INFORMATION PROCESSING (ICCWAMTIP), 2022,
  • [8] Research on 3D Object Detection Based on Laser Point Cloud and Image Fusion
    Liu Y.
    Yu F.
    Zhang X.
    Chen Z.
    Qin D.
    Jixie Gongcheng Xuebao/Journal of Mechanical Engineering, 2022, 58 (24): : 289 - 299
  • [9] A Depth Image Fusion Network for 3D Point Cloud Semantic Segmentation
    Wang, Zhou
    Jia, Zixi
    Lyu, Ao
    Wang, Yating
    Sun, Changsheng
    Liu, Yongxin
    2019 9TH IEEE ANNUAL INTERNATIONAL CONFERENCE ON CYBER TECHNOLOGY IN AUTOMATION, CONTROL, AND INTELLIGENT SYSTEMS (IEEE-CYBER 2019), 2019, : 849 - 853
  • [10] Octant Convolutional Neural Network for 3D Point Cloud Analysis
    Xu X.
    Shuai H.
    Liu Q.-S.
    Zidonghua Xuebao/Acta Automatica Sinica, 2021, 47 (12): : 2791 - 2800