KERNEL FEATURE EXTRACTION FOR HYPERSPECTRAL IMAGE CLASSIFICATION USING CHUNKLET CONSTRAINTS

被引:0
作者
Zhao, Haishi [1 ]
Lu, Laijun [1 ]
Yang, Chen [1 ]
Guan, Renchun [2 ]
机构
[1] Jilin Univ, Coll Earth Sci, Changchun 130061, Peoples R China
[2] Jilin Univ, Coll Comp Sci & Technol, Changchun 130012, Peoples R China
基金
中国国家自然科学基金;
关键词
Feature extraction; hyperspectral remote sensing image; chunklet constraints; kernel method;
D O I
10.4149/cai_2017_1_205
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A novel semi-supervised kernel feature extraction algorithm to combine an efficient metric learning method, i.e. relevant component analysis (RCA), and kernel trick is presented for hyperspectral imagery land-cover classification. This method obtains projection of the input data by learning an optimal nonlinear transformation via a chunklet constraints-based FDA criterion, and called chunklet-based kernel relevant component analysis (CKRCA). The proposed method is appealing as it constructs the kernel very intuitively for the RCA method and does not require any labeled information. The effectiveness of the proposed CKRCA is successfully illustrated in hyperspectral remote sensing image classification. Experimental results demonstrate that the proposed method can greatly improve the classification accuracy compared with traditional linear and conventional kernel-based methods.
引用
收藏
页码:205 / 222
页数:18
相关论文
共 24 条
  • [11] ON MEAN ACCURACY OF STATISTICAL PATTERN RECOGNIZERS
    HUGHES, GF
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 1968, 14 (01) : 55 - +
  • [12] Semisupervised Kernel Feature Extraction for Remote Sensing Image Analysis
    Izquierdo-Verdiguier, Emma
    Gomez-Chova, Luis
    Bruzzone, Lorenzo
    Camps-Valls, Gustavo
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2014, 52 (09): : 5567 - 5578
  • [13] Landgrebe D.A., 2005, SIGNAL THEORY METHOD
  • [14] Luo RB, 2015, 2015 JOINT URBAN REMOTE SENSING EVENT (JURSE)
  • [15] Anomaly Detection in Hyperspectral Imagery Based on Kernel ICA Feature Extraction
    Mei, Feng
    Zhao, Chunhui
    Wang, Liguo
    Huo, Hanjun
    [J]. 2008 INTERNATIONAL SYMPOSIUM ON INTELLIGENT INFORMATION TECHNOLOGY APPLICATION, VOL I, PROCEEDINGS, 2008, : 869 - +
  • [16] Classification of hyperspectral remote sensing images with support vector machines
    Melgani, F
    Bruzzone, L
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2004, 42 (08): : 1778 - 1790
  • [17] Mika S., 1999, Neural Networks for Signal Processing IX: Proceedings of the 1999 IEEE Signal Processing Society Workshop (Cat. No.98TH8468), P41, DOI 10.1109/NNSP.1999.788121
  • [18] Recent advances in techniques for hyperspectral image processing
    Plaza, Antonio
    Benediktsson, Jon Atli
    Boardman, Joseph W.
    Brazile, Jason
    Bruzzone, Lorenzo
    Camps-Valls, Gustavo
    Chanussot, Jocelyn
    Fauvel, Mathieu
    Gamba, Paolo
    Gualtieri, Anthony
    Marconcini, Mattia
    Tilton, James C.
    Trianni, Giovanna
    [J]. REMOTE SENSING OF ENVIRONMENT, 2009, 113 : S110 - S122
  • [19] ROZEL A., 2013, 44 LUN PLAN SCI C
  • [20] Shental N, 2002, LECT NOTES COMPUT SC, V2353, P776