Nitrate foraging by Arabidopsis roots is mediated by the transcription factor TCP20 through the systemic signaling pathway

被引:216
作者
Guan, Peizhu [1 ]
Wang, Rongchen [1 ]
Nacry, Philippe [2 ]
Breton, Ghislain [3 ]
Kay, Steve A. [4 ]
Pruneda-Paz, Jose L. [1 ]
Davani, Ariea [1 ]
Crawford, Nigel M. [1 ]
机构
[1] Univ Calif San Diego, Div Biol Sci, Sect Cell & Dev Biol, La Jolla, CA 92093 USA
[2] CNRS, INRA, Biochim & Physiol Mol Plantes, F-34060 Montpellier, France
[3] Univ Texas Hlth Sci Ctr Houston, Dept Integrat Biol & Pharmacol, Houston, TX 77030 USA
[4] Univ So Calif, Mol & Computat Biol Sect, Los Angeles, CA 90089 USA
基金
美国国家科学基金会;
关键词
TCP20; nitrate; root foraging; systemic signaling; Arabidopsis; MADS-BOX GENE; DNA-BINDING; PLANT-GROWTH; REGULATORY ELEMENTS; TRANSPORTER NRT2.1; NITROGEN RESPONSES; CLASS-I; AUXIN; IDENTIFICATION; ARCHITECTURE;
D O I
10.1073/pnas.1411375111
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
To compete for nutrients in diverse soil microenvironments, plants proliferate lateral roots preferentially in nutrient-rich zones. For nitrate, root foraging involves local and systemic signaling; however, little is known about the genes that function in the systemic signaling pathway. By using nitrate enhancer DNA to screen a library of Arabidopsis transcription factors in the yeast one-hybrid system, the transcription factor gene TEOSINTE BRANCHED1/CYCLOIDEA/PROLIFERATING CELL FACTOR1-20 (TCP20) was identified. TCP20, which belongs to an ancient, plant-specific gene family that regulates shoot, flower, and embryo development, was implicated in nitrate signaling by its ability to bind DNA in more than 100 nitrate-regulated genes. Analysis of insertion mutants of TCP20 showed that they had normal primary and lateral root growth on homogenous nitratemedia but were impaired in preferential lateral root growth (root foraging) on heterogeneous media in split-root plates. Inhibition of preferential lateral root growth was still evident in the mutants even when ammonium was uniformly present in the media, indicating that the TCP20 response was to nitrate. Comparison of tcp20 mutants with those of nlp7 mutants, which are defective in local control of root growth but not in the root-foraging response, indicated that TCP20 function is independent of and distinct from NLP7 function. Further analysis showed that tcp20 mutants lack systemic control of root growth regardless of the local nitrate concentrations. These results indicate that TCP20 plays a key role in the systemic signaling pathway that directs nitrate foraging by Arabidopsis roots.
引用
收藏
页码:15267 / 15272
页数:6
相关论文
共 74 条
[1]   Identification of Specific DNA Binding Residues in the TCP Family of Transcription Factors in Arabidopsis [J].
Aggarwal, Pooja ;
Das Gupta, Mainak ;
Joseph, Agnel Praveen ;
Chatterjee, Nirmalya ;
Srinivasan, N. ;
Nath, Utpal .
PLANT CELL, 2010, 22 (04) :1174-1189
[2]   Analysis of the role of Arabidopsis class I TCP genes At TCP7, At TCP8, At TCP22, and At TCP23 in leaf development [J].
Aguilar-Martinez, Jose A. ;
Sinha, Neelima .
FRONTIERS IN PLANT SCIENCE, 2013, 4
[3]   Genome-wide Insertional mutagenesis of Arabidopsis thaliana [J].
Alonso, JM ;
Stepanova, AN ;
Leisse, TJ ;
Kim, CJ ;
Chen, HM ;
Shinn, P ;
Stevenson, DK ;
Zimmerman, J ;
Barajas, P ;
Cheuk, R ;
Gadrinab, C ;
Heller, C ;
Jeske, A ;
Koesema, E ;
Meyers, CC ;
Parker, H ;
Prednis, L ;
Ansari, Y ;
Choy, N ;
Deen, H ;
Geralt, M ;
Hazari, N ;
Hom, E ;
Karnes, M ;
Mulholland, C ;
Ndubaku, R ;
Schmidt, I ;
Guzman, P ;
Aguilar-Henonin, L ;
Schmid, M ;
Weigel, D ;
Carter, DE ;
Marchand, T ;
Risseeuw, E ;
Brogden, D ;
Zeko, A ;
Crosby, WL ;
Berry, CC ;
Ecker, JR .
SCIENCE, 2003, 301 (5633) :653-657
[4]   Integration of local and systemic signaling pathways for plant N responses [J].
Alvarez, Jose M. ;
Vidal, Elena A. ;
Gutierrez, Rodrigo A. .
CURRENT OPINION IN PLANT BIOLOGY, 2012, 15 (02) :185-191
[5]   CLE-CLAVATA1 peptide-receptor signaling module regulates the expansion of plant root systems in a nitrogen-dependent manner [J].
Araya, Takao ;
Miyamoto, Mayu ;
Wibowo, Juliarni ;
Suzuki, Akinori ;
Kojima, Soichi ;
Tsuchiya, Yumiko N. ;
Sawa, Shinichiro ;
Fukuda, Hiroo ;
von Wiren, Nicolaus ;
Takahashi, Hideki .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2014, 111 (05) :2029-2034
[6]   Identification of Cytokinin-Responsive Genes Using Microarray Meta-Analysis and RNA-Seq in Arabidopsis [J].
Bhargava, Apurva ;
Clabaugh, Ivory ;
To, Jenn P. ;
Maxwell, Bridey B. ;
Chiang, Yi-Hsuan ;
Schaller, G. Eric ;
Loraine, Ann ;
Kieber, Joseph J. .
PLANT PHYSIOLOGY, 2013, 162 (01) :272-294
[7]   Nitrate sensing and signaling in plants [J].
Bouguyon, Eleonore ;
Gojon, Alain ;
Nacry, Philippe .
SEMINARS IN CELL & DEVELOPMENTAL BIOLOGY, 2012, 23 (06) :648-654
[8]   The nodule inception-like protein 7 modulates nitrate sensing and metabolism in Arabidopsis [J].
Castaings, Loren ;
Camargo, Antonio ;
Pocholle, Delphine ;
Gaudon, Virginie ;
Texier, Yves ;
Boutet-Mercey, Stephanie ;
Taconnat, Ludivine ;
Renou, Jean-Pierre ;
Daniel-Vedele, Francoise ;
Fernandez, Emilio ;
Meyer, Christian ;
Krapp, Anne .
PLANT JOURNAL, 2009, 57 (03) :426-435
[9]   Molecular and physiological aspects of nitrate uptake in plants [J].
Crawford, NM ;
Glass, ADM .
TRENDS IN PLANT SCIENCE, 1998, 3 (10) :389-395
[10]   The TCP domain: a motif found in proteins regulating plant growth and development [J].
Cubas, P ;
Lauter, N ;
Doebley, J ;
Coen, E .
PLANT JOURNAL, 1999, 18 (02) :215-222