Computational pathology of pre-treatment biopsies identifies lymphocyte density as a predictor of response to neoadjuvant chemotherapy in breast cancer

被引:64
作者
Ali, H. Raza [1 ,2 ]
Dariush, Aliakbar [3 ]
Provenzano, Elena [4 ,5 ,6 ,7 ]
Bardwell, Helen [1 ]
Abraham, Jean E. [4 ,6 ,7 ]
Iddawela, Mahesh [4 ,15 ]
Vallier, Anne-Laure [4 ,6 ,7 ]
Hiller, Louise [8 ]
Dunn, Janet. A. [8 ]
Bowden, Sarah J. [9 ]
Hickish, Tamas [10 ,11 ]
McAdam, Karen [12 ,13 ]
Houston, Stephen [14 ]
Irwin, Mike J. [3 ]
Pharoah, Paul D. P. [4 ,6 ,7 ]
Brenton, James D. [1 ,4 ,6 ,7 ]
Walton, Nicholas A. [3 ]
Earl, Helena M. [4 ,6 ,7 ]
Caldas, Carlos [1 ,4 ,6 ,7 ]
机构
[1] Univ Cambridge, Li Ka Shing Ctr, Canc Res UK Cambridge Inst, Cambridge, England
[2] Univ Cambridge, Dept Pathol, Tennis Court Rd, Cambridge CB2 1QP, England
[3] Univ Cambridge, Inst Astron, Madingley Rd, Cambridge CB3 0HA, England
[4] Univ Cambridge, Addenbrookes Hosp, Dept Oncol, Cambridge CB2 2QQ, England
[5] Cambridge Univ Hosp NHS Fdn Trust, Addenbrookes Hosp, Dept Histopathol, Cambridge, England
[6] Cambridge Expt Canc Med Ctr, Cambridge, England
[7] NIHR Cambridge Biomed Res Ctr, Cambridge, England
[8] Univ Warwick, Warwick Clin Trials Unit, Coventry CV4 7AL, W Midlands, England
[9] Univ Birmingham, Inst Canc Studies, Canc Res UK Clin Trials Unit, Birmingham, W Midlands, England
[10] Royal Bournemouth Hosp, Castle Lane East, Bournemouth, Dorset, England
[11] Bournemouth Univ, Castle Lane East, Bournemouth, Dorset, England
[12] Peterborough & Stamford Hosp NHS Fdn Trust, Peterborough, Cambs, England
[13] Cambridge Univ Hosp NHS Fdn Trust, Peterborough, Cambs, England
[14] Royal Surrey Cty Hosp NHS Fdn Trust, Egerton Rd, Guildford, Surrey, England
[15] Monash Univ, Dept Anat & Dev Biol, Clayton, Vic, Australia
来源
BREAST CANCER RESEARCH | 2016年 / 18卷
关键词
Breast cancer; Computational pathology; Neoadjuvant; Lymphocytes; Treatment resistance; Immunology; TUMOR-INFILTRATING LYMPHOCYTES; ANTHRACYCLINE CHEMOTHERAPY; PROTEIN EXPRESSION; AUTOMATED-ANALYSIS; NEO-TANGO; ASSOCIATION; MPDL3280A; SURVIVAL;
D O I
10.1186/s13058-016-0682-8
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Background: There is a need to improve prediction of response to chemotherapy in breast cancer in order to improve clinical management and this may be achieved by harnessing computational metrics of tissue pathology. We investigated the association between quantitative image metrics derived from computational analysis of digital pathology slides and response to chemotherapy in women with breast cancer who received neoadjuvant chemotherapy. Methods: We digitised tissue sections of both diagnostic and surgical samples of breast tumours from 768 patients enrolled in the Neo-tAnGo randomized controlled trial. We subjected digital images to systematic analysis optimised for detection of single cells. Machine-learning methods were used to classify cells as cancer, stromal or lymphocyte and we computed estimates of absolute numbers, relative fractions and cell densities using these data. Pathological complete response (pCR), a histological indicator of chemotherapy response, was the primary endpoint. Fifteen image metrics were tested for their association with pCR using univariate and multivariate logistic regression. Results: Median lymphocyte density proved most strongly associated with pCR on univariate analysis (OR 4.46, 95 % CI 2.34-8.50, p < 0.0001; observations = 614) and on multivariate analysis (OR 2.42, 95 % CI 1.08-5.40, p = 0.03; observations = 406) after adjustment for clinical factors. Further exploratory analyses revealed that in approximately one quarter of cases there was an increase in lymphocyte density in the tumour removed at surgery compared to diagnostic biopsies. A reduction in lymphocyte density at surgery was strongly associated with pCR (OR 0.28, 95 % CI 0.17-0.47, p < 0.0001; observations = 553). Conclusions: A data-driven analysis of computational pathology reveals lymphocyte density as an independent predictor of pCR. Paradoxically an increase in lymphocyte density, following exposure to chemotherapy, is associated with a lack of pCR. Computational pathology can provide objective, quantitative and reproducible tissue metrics and represents a viable means of outcome prediction in breast cancer.
引用
收藏
页数:11
相关论文
共 35 条
[1]   Prognostic Value of Tumor-Infiltrating Lymphocytes in Triple-Negative Breast Cancers From Two Phase III Randomized Adjuvant Breast Cancer Trials: ECOG 2197 and ECOG 1199 [J].
Adams, Sylvia ;
Gray, Robert J. ;
Demaria, Sandra ;
Goldstein, Lori ;
Perez, Edith A. ;
Shulman, Lawrence N. ;
Martino, Silvana ;
Wang, Molin ;
Jones, Vicky E. ;
Saphner, Thomas J. ;
Wolff, Antonio C. ;
Wood, William C. ;
Davidson, Nancy E. ;
Sledge, George W. ;
Sparano, Joseph A. ;
Badve, Sunil S. .
JOURNAL OF CLINICAL ONCOLOGY, 2014, 32 (27) :2959-+
[2]   PD-L1 protein expression in breast cancer is rare, enriched in basal-like tumours and associated with infiltrating lymphocytes [J].
Ali, H. R. ;
Glont, S. -E. ;
Blows, F. M. ;
Provenzano, E. ;
Dawson, S. -J. ;
Liu, B. ;
Hiller, L. ;
Dunn, J. ;
Poole, C. J. ;
Bowden, S. ;
Earl, H. M. ;
Pharoah, P. D. P. ;
Caldas, C. .
ANNALS OF ONCOLOGY, 2015, 26 (07) :1488-1493
[3]   Association between CD8+T-cell infiltration and breast cancer survival in 12 439 patients [J].
Ali, H. R. ;
Provenzano, E. ;
Dawson, S-J ;
Blows, F. M. ;
Liu, B. ;
Shah, M. ;
Earl, H. M. ;
Poole, C. J. ;
Hiller, L. ;
Dunn, J. A. ;
Bowden, S. J. ;
Twelves, C. ;
Bartlett, J. M. S. ;
Mahmoud, S. M. A. ;
Rakha, E. ;
Ellis, I. O. ;
Liu, S. ;
Gao, D. ;
Nielsen, T. O. ;
Pharoah, P. D. P. ;
Caldas, C. .
ANNALS OF ONCOLOGY, 2014, 25 (08) :1536-1543
[4]   Astronomical algorithms for automated analysis of tissue protein expression in breast cancer [J].
Ali, H. R. ;
Irwin, M. ;
Morris, L. ;
Dawson, S-J ;
Blows, F. M. ;
Provenzano, E. ;
Mahler-Araujo, B. ;
Pharoah, P. D. ;
Walton, N. A. ;
Brenton, J. D. ;
Caldas, C. .
BRITISH JOURNAL OF CANCER, 2013, 108 (03) :602-612
[5]   Reporting Recommendations for Tumor Marker Prognostic Studies (REMARK): Explanation and Elaboration [J].
Altman, Douglas G. ;
McShane, Lisa M. ;
Sauerbrei, Willi ;
Taube, Sheila E. .
PLOS MEDICINE, 2012, 9 (05)
[6]   Systematic Analysis of Breast Cancer Morphology Uncovers Stromal Features Associated with Survival [J].
Beck, Andrew H. ;
Sangoi, Ankur R. ;
Leung, Samuel ;
Marinelli, Robert J. ;
Nielsen, Torsten O. ;
van de Vijver, Marc J. ;
West, Robert B. ;
van de Rijn, Matt ;
Koller, Daphne .
SCIENCE TRANSLATIONAL MEDICINE, 2011, 3 (108)
[7]   Pathologic Complete Response As a Potential Surrogate for the Clinical Outcome in Patients With Breast Cancer After Neoadjuvant Therapy: A Meta-Regression of 29 Randomized Prospective Studies [J].
Berruti, Alfredo ;
Amoroso, Vito ;
Gallo, Fabio ;
Bertaglia, Valentina ;
Simoncini, Edda ;
Pedersini, Rebecca ;
Ferrari, Laura ;
Bottini, Alberto ;
Bruzzi, Paolo ;
Sormani, Maria Pia .
JOURNAL OF CLINICAL ONCOLOGY, 2014, 32 (34) :3883-U288
[8]   Improved prediction of prostate cancer recurrence through systems pathology [J].
Cordon-Cardo, Carlos ;
Kotsianti, Angeliki ;
Verbel, David A. ;
Teverovskiy, Mikhail ;
Capodieci, Paola ;
Hamann, Stefan ;
Jeffers, Yusuf ;
Clayton, Mark ;
Elkhettabi, Faysal ;
Khan, Faisal M. ;
Sapir, Marina ;
Bayer-Zubek, Valentina ;
Vengrenyuk, Yevgen ;
Fogarsi, Stephen ;
Saidi, Olivier ;
Reuter, Victor E. ;
Scher, Howard I. ;
Kattan, Michael W. ;
Bianco, Fernando J., Jr. ;
Wheeler, Thomas M. ;
Ayala, Gustavo E. ;
Scardino, Peter T. ;
Donovan, Michael J. .
JOURNAL OF CLINICAL INVESTIGATION, 2007, 117 (07) :1876-1883
[9]   Pathological complete response and long-term clinical benefit in breast cancer: the CTNeoBC pooled analysis [J].
Cortazar, Patricia ;
Zhang, Lijun ;
Untch, Michael ;
Mehta, Keyur ;
Costantino, Joseph P. ;
Wolmark, Norman ;
Bonnefoi, Herve ;
Cameron, David ;
Gianni, Luca ;
Valagussa, Pinuccia ;
Swain, Sandra M. ;
Prowell, Tatiana ;
Loibl, Sibylle ;
Wickerham, D. Lawrence ;
Bogaerts, Jan ;
Baselga, Jose ;
Perou, Charles ;
Blumenthal, Gideon ;
Blohmer, Jens ;
Mamounas, Eleftherios P. ;
Bergh, Jonas ;
Semiglazov, Vladimir ;
Justice, Robert ;
Eidtmann, Holger ;
Paik, Soonmyung ;
Piccart, Martine ;
Sridhara, Rajeshwari ;
Fasching, Peter A. ;
Slaets, Leen ;
Tang, Shenghui ;
Gerber, Bernd ;
Geyer, Charles E., Jr. ;
Pazdur, Richard ;
Ditsch, Nina ;
Rastogi, Priya ;
Eiermann, Wolfgang ;
von Minckwitz, Gunter .
LANCET, 2014, 384 (9938) :164-172
[10]   The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups [J].
Curtis, Christina ;
Shah, Sohrab P. ;
Chin, Suet-Feung ;
Turashvili, Gulisa ;
Rueda, Oscar M. ;
Dunning, Mark J. ;
Speed, Doug ;
Lynch, Andy G. ;
Samarajiwa, Shamith ;
Yuan, Yinyin ;
Graef, Stefan ;
Ha, Gavin ;
Haffari, Gholamreza ;
Bashashati, Ali ;
Russell, Roslin ;
McKinney, Steven ;
Langerod, Anita ;
Green, Andrew ;
Provenzano, Elena ;
Wishart, Gordon ;
Pinder, Sarah ;
Watson, Peter ;
Markowetz, Florian ;
Murphy, Leigh ;
Ellis, Ian ;
Purushotham, Arnie ;
Borresen-Dale, Anne-Lise ;
Brenton, James D. ;
Tavare, Simon ;
Caldas, Carlos ;
Aparicio, Samuel .
NATURE, 2012, 486 (7403) :346-352