Experimental measurement-device-independent quantum key distribution with imperfect sources

被引:76
作者
Tang, Zhiyuan [1 ,2 ]
Wei, Kejin [1 ,2 ,3 ,4 ]
Bedroya, Olinka [1 ,2 ]
Qian, Li [1 ,2 ]
Lo, Hoi-Kwong [1 ,2 ]
机构
[1] Univ Toronto, Dept Phys, Ctr Quantum Informat & Quantum Control, Toronto, ON M5S 3G4, Canada
[2] Univ Toronto, Dept Elect & Comp Engn, Toronto, ON M5S 3G4, Canada
[3] Beijing Univ Posts & Telecommun, Sch Sci, Beijing 100876, Peoples R China
[4] Beijing Univ Posts & Telecommun, State Key Lab Informat Photon & Opt Commun, Beijing 100876, Peoples R China
基金
加拿大自然科学与工程研究理事会;
关键词
UNCONDITIONAL SECURITY; CONTINUOUS-VARIABLES; DISCRETE; PROOF;
D O I
10.1103/PhysRevA.93.042308
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Measurement-device-independent quantum key distribution (MDI-QKD), which is immune to all detector side-channel attacks, is the most promising solution to the security issues in practical quantum key distribution systems. Although several experimental demonstrations of MDI-QKD have been reported, they all make one crucial but not yet verified assumption, that is, there are no flaws in state preparation. Such an assumption is unrealistic and security loopholes remain in the source. Here we present a MDI-QKD experiment with the modulation error taken into consideration. By applying the loss-tolerant security proof by Tamaki et al. [Phys. Rev. A 90, 052314 (2014)], we distribute secure keys over fiber links up to 40 km with imperfect sources, which would not have been possible under previous security proofs. By simultaneously closing loopholes at the detectors and a critical loophole-modulation error in the source, our work shows the feasibility of secure QKD with practical imperfect devices.
引用
收藏
页数:13
相关论文
共 69 条
[1]   Device-independent security of quantum cryptography against collective attacks [J].
Acin, Antonio ;
Brunner, Nicolas ;
Gisin, Nicolas ;
Massar, Serge ;
Pironio, Stefano ;
Scarani, Valerio .
PHYSICAL REVIEW LETTERS, 2007, 98 (23)
[2]  
[Anonymous], 1984, P IEEE INT C COMP, DOI DOI 10.1016/J.TCS.2014.05.025
[3]   Quantum cryptographic network based on quantum memories [J].
Biham, E ;
Huttner, B ;
Mor, T .
PHYSICAL REVIEW A, 1996, 54 (04) :2651-2658
[4]   A proof of the security of quantum key distribution [J].
Biham, Eli ;
Boyer, Michel ;
Boykin, P. Oscar ;
Mor, Tal ;
Roychowdhury, Vwani .
JOURNAL OF CRYPTOLOGY, 2006, 19 (04) :381-439
[5]   Measurement-Device-Independent Entanglement Witnesses for All Entangled Quantum States [J].
Branciard, Cyril ;
Rosset, Denis ;
Liang, Yeong-Cherng ;
Gisin, Nicolas .
PHYSICAL REVIEW LETTERS, 2013, 110 (06)
[6]   Side-Channel-Free Quantum Key Distribution [J].
Braunstein, Samuel L. ;
Pirandola, Stefano .
PHYSICAL REVIEW LETTERS, 2012, 108 (13)
[7]   Laser Damage Helps the Eavesdropper in Quantum Cryptography [J].
Bugge, Audun Nystad ;
Sauge, Sebastien ;
Ghazali, Aina Mardhiyah M. ;
Skaar, Johannes ;
Lydersen, Lars ;
Makarov, Vadim .
PHYSICAL REVIEW LETTERS, 2014, 112 (07)
[8]   Discrete-phase-randomized coherent state source and its application in quantum key distribution [J].
Cao, Zhu ;
Zhang, Zhen ;
Lo, Hoi-Kwong ;
Ma, Xiongfeng .
NEW JOURNAL OF PHYSICS, 2015, 17
[9]  
Comandar L. C., ARXIV150908137
[10]   Finite-key analysis for measurement-device-independent quantum key distribution [J].
Curty, Marcos ;
Xu, Feihu ;
Cui, Wei ;
Lim, Charles Ci Wen ;
Tamaki, Kiyoshi ;
Lo, Hoi-Kwong .
NATURE COMMUNICATIONS, 2014, 5