Multi-variable optimization of PEMFC cathodes using an agglomerate model

被引:180
作者
Secanell, M.
Karan, K.
Suleman, A.
Djilali, N.
机构
[1] Univ Victoria, Inst Integrated Energy Syst, Dept Mech Engn, Victoria, BC V8W 3P6, Canada
[2] Queens Univ, Queens RMC Fuel Cell Res Ctr, Dept Chem Engn, Kingston, ON K7L 3N6, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
fuel cell; catalyst layer; gas diffusion layer; platinum loading; sensitivity analysis; finite elements; ELECTROLYTE FUEL-CELLS; 3-DIMENSIONAL COMPUTATIONAL ANALYSIS; CATALYST LAYER; TRANSPORT PHENOMENA; NUMERICAL OPTIMIZATION; MATHEMATICAL-MODEL; NAFION CONTENT; PERFORMANCE; GEOMETRY;
D O I
10.1016/j.electacta.2007.04.028
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
A comprehensive numerical framework for cathode electrode design is presented and applied to predict the catalyst layer and the gas diffusion layer parameters that lead to an optimal electrode performance at different operating conditions. The design and optimization framework couples an agglomerate cathode catalyst layer model to a numerical gradient-based optimization algorithm. The set of optimal parameters is obtained by solving a multi-variable optimization problem. The parameters are the catalyst layer platinum loading, platinum to carbon ratio, amount of electrolyte in the agglomerate and the gas diffusion layer porosity. The results show that the optimal catalyst layer composition and gas diffusion layer porosity depend on operating conditions. At low current densities, performance is mainly improved by increasing platinum loading to values above 1 mg cm(-2), moderate values of electrolyte volume fraction, 0.5, and low porosity, 0.1. At higher current densities, performance is improved by reducing the platinum loading to values below 0.35 mg cm(-2) and increasing both electrolyte volume fraction, 0.55, and porosity 0.32. The underlying improvements due to the optimized compositions are analyzed in terms of the spatial distribution of the various overpotentials, and the effect of the agglomerate structure parameters (radius and electrolyte film) are investigated. The paper closes with a discussion of the optimized composition obtained in this study in the context of available experimental data. The analysis suggests that reducing the solid phase volume fraction inside the catalyst layer might lead to improved electrode performance. (c) 2007 Published by Elsevier Ltd.
引用
收藏
页码:6318 / 6337
页数:20
相关论文
共 47 条
[1]   Influence of Nafion loading in the catalyst layer of gas-diffusion electrodes for PEFC [J].
Antolini, E ;
Giorgi, L ;
Pozio, A ;
Passalacqua, E .
JOURNAL OF POWER SOURCES, 1999, 77 (02) :136-142
[2]  
Bangerth W., II Differential Equations Analysis Library, Technical Reference
[3]   A MATHEMATICAL-MODEL OF THE SOLID-POLYMER-ELECTROLYTE FUEL-CELL [J].
BERNARDI, DM ;
VERBRUGGE, MW .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1992, 139 (09) :2477-2491
[4]   MATHEMATICAL-MODEL OF A GAS-DIFFUSION ELECTRODE BONDED TO A POLYMER ELECTROLYTE [J].
BERNARDI, DM ;
VERBRUGGE, MW .
AICHE JOURNAL, 1991, 37 (08) :1151-1163
[5]   Three-dimensional computational analysis of transport phenomena in a PEM fuel cell [J].
Berning, T ;
Lu, DM ;
Djilali, N .
JOURNAL OF POWER SOURCES, 2002, 106 (1-2) :284-294
[6]   Three-dimensional computational analysis of transport phenomena in a PEM fuel cell - a parametric study [J].
Berning, T ;
Djilali, N .
JOURNAL OF POWER SOURCES, 2003, 124 (02) :440-452
[7]   Simulation of a polymer electrolyte fuel cell electrode [J].
Bevers, D ;
Wohr, M ;
Yasuda, K ;
Oguro, K .
JOURNAL OF APPLIED ELECTROCHEMISTRY, 1997, 27 (11) :1254-1264
[8]  
Bird R.B., 2002, TRANSPORT PHENOMENA
[9]   Modelling the PEM fuel cell cathode [J].
Broka, K ;
Ekdunge, P .
JOURNAL OF APPLIED ELECTROCHEMISTRY, 1997, 27 (03) :281-289
[10]  
Cacuci DG., 2003, SENSITIVITY UNCERTAI