Bilinear form and new multi-soliton solutions of the classical Boussinesq-Burgers system

被引:25
作者
Zhang, Cui-Cui [1 ]
Chen, Ai-Hua [1 ]
机构
[1] Univ Shanghai Sci & Technol, Coll Sci, Shanghai 200093, Peoples R China
基金
中国国家自然科学基金;
关键词
Classical Boussinesq-Burgers system; Bilinear form; Multi-soliton solutions; Asymptotic analysis; DARBOUX TRANSFORMATIONS; SOLITON-SOLUTIONS; EQUATIONS; EVOLUTION; WAVES;
D O I
10.1016/j.aml.2016.02.015
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the multi-soliton solutions and their interactions of the classical Boussinesq-Burgers (CBB) system describing propagations of shallow water waves. Based on the Hirota bilinear method, we obtain new multi-soliton solutions of the CBB system. By using asymptotic analysis, we find that the interactions of the multi-soliton solutions are purely elastic. The interactions are shown graphically. We also find that the multi-soliton solution types may depend on the parameter in the CBB system. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:133 / 139
页数:7
相关论文
共 14 条
[1]   Finite-band solutions of the classical Boussinesq-Burgers equations [J].
Geng, XG ;
Wu, YT .
JOURNAL OF MATHEMATICAL PHYSICS, 1999, 40 (06) :2971-2982
[2]   Comparison between homotopy perturbation method and optimal homotopy asymptotic method for the soliton solutions of Boussinesq-Burger equations [J].
Gupta, A. K. ;
Ray, S. Saha .
COMPUTERS & FLUIDS, 2014, 103 :34-41
[3]  
Hirota R., 2004, The direct method in soliton theory
[4]   SOLITON RESONANCES FOR THE GOOD BOUSSINESQ EQUATION [J].
LAMBERT, F ;
MUSETTE, M ;
KESTELOOT, E .
INVERSE PROBLEMS, 1987, 3 (02) :275-288
[6]   Darboux transformation and multi-soliton solutions of Boussinesq-Burgers equation [J].
Li, XM ;
Chen, AH .
PHYSICS LETTERS A, 2005, 342 (5-6) :413-420
[7]   Darboux transformations of classical Boussinesq system and its new solutions [J].
Li, YS ;
Ma, WX ;
Zhang, JE .
PHYSICS LETTERS A, 2000, 275 (1-2) :60-66
[8]   Darboux transformations of classical Boussinesq system and its multi-soliton solutions [J].
Li, YS ;
Zhang, JE .
PHYSICS LETTERS A, 2001, 284 (06) :253-258
[9]   N-fold Darboux transformation and multi-soliton solutions for the classical Boussinesq-Burgers system [J].
Mei, Jianqin ;
Ma, Zhangyun .
APPLIED MATHEMATICS AND COMPUTATION, 2013, 219 (11) :6163-6169
[10]   Lax pair, Backlund transformation and multi-soliton solutions for the Boussinesq-Burgers equations from shallow water waves [J].
Wang, Pan ;
Tian, Bo ;
Liu, Wen-Jun ;
Lue, Xing ;
Jiang, Yan .
APPLIED MATHEMATICS AND COMPUTATION, 2011, 218 (05) :1726-1734