Microrheology with Optical Tweezers: Measuring the relative viscosity of solutions 'at a glance'

被引:58
|
作者
Tassieri, Manlio [1 ]
Del Giudice, Francesco [2 ]
Robertson, Emma J. [3 ]
Jain, Neena [4 ]
Fries, Bettina [4 ]
Wilson, Rab [1 ]
Glidle, Andrew [1 ]
Greco, Francesco [5 ]
Netti, Paolo Antonio [2 ]
Maffettone, Pier Luca [6 ]
Bicanic, Tihana [3 ]
Cooper, Jonathan M. [1 ]
机构
[1] Univ Glasgow, Sch Engn, Div Biomed Engn, Glasgow G12 8LT, Lanark, Scotland
[2] IIT, Ctr Adv Biomat Hlth Care CRIB, I-80125 Naples, Italy
[3] St Georges Univ London, Dept Infect & Immun, London SW17 0RS, England
[4] Albert Einstein Coll Med, Dept Med, Bronx, NY 10467 USA
[5] IRC CNR, Ist Ric Combust, I-80125 Naples, Italy
[6] Univ Naples Federico II, Dipartimento Ingn Chim Mat & Prod Ind, I-80125 Naples, Italy
来源
SCIENTIFIC REPORTS | 2015年 / 5卷
基金
英国工程与自然科学研究理事会; 英国惠康基金;
关键词
ROD-LIKE MACROMOLECULES; VISCOELASTIC MODULI; DYNAMICS; SUSPENSIONS; VISCOMETER; SCATTERING; RHEOLOGY;
D O I
10.1038/srep08831
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We present a straightforward method for measuring the relative viscosity of fluids via a simple graphical analysis of the normalised position autocorrelation function of an optically trapped bead, without the need of embarking on laborious calculations. The advantages of the proposed microrheology method are evident when it is adopted for measurements of materials whose availability is limited, such as those involved in biological studies. The method has been validated by direct comparison with conventional bulk rheology methods, and has been applied both to characterise synthetic linear polyelectrolytes solutions and to study biomedical samples.
引用
收藏
页数:6
相关论文
共 15 条
  • [1] Optical tweezers: wideband microrheology
    Preece, Daryl
    Warren, Rebecca
    Evans, R. M. L.
    Gibson, Graham M.
    Padgett, Miles J.
    Cooper, Jonathan M.
    Tassieri, Manlio
    JOURNAL OF OPTICS, 2011, 13 (04)
  • [2] Measuring storage and loss moduli using optical tweezers: Broadband microrheology
    Tassieri, Manlio
    Gibson, Graham M.
    Evans, R. M. L.
    Yao, Alison M.
    Warren, Rebecca
    Padgett, Miles J.
    Cooper, Jonathan M.
    PHYSICAL REVIEW E, 2010, 81 (02):
  • [3] Linear microrheology with optical tweezers of living cells 'is not an option'!
    Tassieri, Manlio
    SOFT MATTER, 2015, 11 (29) : 5792 - 5798
  • [4] Characterizing intracellular mechanics via optical tweezers-based microrheology
    Vos, Bart E.
    Muenker, Till M.
    Betz, Timo
    CURRENT OPINION IN CELL BIOLOGY, 2024, 88
  • [5] Optical tweezers based active microrheology of sodium polystyrene sulfonate (NaPSS)
    Chiang, Chia-Chun
    Wei, Ming-Tzo
    Chen, Yin-Quan
    Yen, Pei-Wen
    Huang, Yi-Chiao
    Chen, Jun-Yeh
    Lavastre, Olivier
    Guillaume, Husson
    Guillaume, Darsy
    Chiou, Arthur
    OPTICS EXPRESS, 2011, 19 (09): : 8847 - 8854
  • [6] Microrheology of complex fluids using optical tweezers: a comparison with macrorheological measurements
    Pesce, G.
    De Luca, A. C.
    Rusciano, G.
    Netti, P. A.
    Fusco, S.
    Sasso, A.
    JOURNAL OF OPTICS A-PURE AND APPLIED OPTICS, 2009, 11 (03):
  • [7] Microrheology using dual beam optical tweezers and ultrasensitive force measurements
    Knöner, G
    Parkin, S
    Heckenberg, NR
    Rubinsztein-Dunlop, H
    NANOMANIPULATION WITH LIGHT, 2005, 5736 : 73 - 80
  • [8] Single-shot wideband active microrheology using multiple-sinusoid modulated optical tweezers
    Kundu, Avijit
    Dey, Raunak
    Paul, Shuvojit
    Banerjee, Ayan
    PHYSICAL REVIEW FLUIDS, 2021, 6 (12):
  • [9] Optical Microrheology of Protein Solutions Using Tailored Nanoparticles
    Garting, Tommy
    Stradner, Anna
    SMALL, 2018, 14 (46)
  • [10] Living cells as a biological analog of optical tweezers-a non-invasive microrheology approach
    Hardiman, William
    Clark, Matt
    Friel, Claire
    Huett, Alan
    Perez-Cota, Fernando
    Setchfield, Kerry
    Wright, Amanda J.
    Tassieri, Manlio
    ACTA BIOMATERIALIA, 2023, 166 : 317 - 325