On a class of coupled Schrodinger systems with critical Sobolev exponent growth

被引:6
作者
Guo, Zhenyu [1 ]
Zou, Wenming [1 ]
机构
[1] Tsinghua Univ, Dept Math Sci, Beijing 100084, Peoples R China
关键词
Nehari manifold; Schrodinger system; least energy; critical exponent; POSITIVE SOLUTIONS; ELLIPTIC-SYSTEMS; GROUND-STATES; STRONG COMPETITION; PHASE SEGREGATION; STANDING WAVES; EQUATIONS; SEPARATION; EXISTENCE; SYMMETRY;
D O I
10.1002/mma.3598
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Consider the following two critical nonlinear Schrodinger systems: {-Delta u + lambda(1)u = mu(1)u(2*-1) + alpha gamma/2*u(alpha-1)v(beta), x is an element of Omega, -Delta v + lambda(2)v = mu(2)v(2*-1) + beta gamma/2*u(alpha)v(beta-1), x is an element of Omega, (0.1) u > 0, v > 0 in Omega, u =v =0 on partial derivative Omega, {-Delta u = mu(1)vertical bar u vertical bar(2*-2)u + alpha gamma/2* f(alpha,beta)(u,v), x is an element of R-N, -Delta v = mu(2)vertical bar u vertical bar(2*-2)v + beta gamma/2* g(alpha,beta)(u,v), x is an element of R-N, (0.2) u, v in D-1,D-2 (R-N), where Omega subset of R-N is a smooth bounded domain, N >= 3, -lambda(Omega) < lambda(1), lambda(2) < 0, mu(1), mu(2) > 0, alpha, beta >= 1 with alpha + beta = 2*, gamma not equal 0, lambda(Omega) is the first eigenvalue of -Delta with the Dirichlet boundary condition and f(alpha,beta) (u, v) = {vertical bar u vertical bar(alpha-2)u vertical bar v vertical bar(beta), if alpha, beta > 1, vertical bar v vertical bar(2*-1), if alpha = 1, g(alpha, beta)(u,v) = {vertical bar u vertical bar(alpha)vertical bar v vertical bar(beta-2), if alpha, beta > 1, u vertical bar v vertical bar(2*-3)v, if alpha = 1, vertical bar u vertical bar(2*-1), if beta = 1. vertical bar u vertical bar(2*-3) uv, if beta = 1, For N = 3, lambda(1) = lambda(2), gamma > 0 small, we obtain the existence of positive least energy solution of (0.1) and ( 0.2). For N >= 5, gamma > 0, the existence of positive least energy solution of (0.2) is established. For N >= 5, gamma not equal 0, we prove that (0.1) possesses a positive least energy solution. The limit behavior of the positive least energy solutions when gamma -> -infinity and phase separation for (0.1) are also considered. Copyright (C) 2015 JohnWiley & Sons, Ltd.
引用
收藏
页码:1730 / 1746
页数:17
相关论文
共 34 条
  • [1] Bound and ground states of coupled nonlinear Schrodinger equations
    Ambrosetti, A
    Colorado, E
    [J]. COMPTES RENDUS MATHEMATIQUE, 2006, 342 (07) : 453 - 458
  • [2] Ambrosetti A., 1973, Journal of Functional Analysis, V14, P349, DOI 10.1016/0022-1236(73)90051-7
  • [3] Standing waves of some coupled nonlinear Schrodinger equations
    Ambrosetti, Antonio
    Colorado, Eduardo
    [J]. JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2007, 75 : 67 - 82
  • [4] Anbin T., 1976, J. Diff. Geom., V11, P573
  • [5] [Anonymous], 2003, SOBOLEV SPACES
  • [6] On phase segregation in nonlocal two-particle Hartree systems
    Aschbacher, Walter H.
    Squassina, Marco
    [J]. CENTRAL EUROPEAN JOURNAL OF MATHEMATICS, 2009, 7 (02): : 230 - 248
  • [7] Bound states for a coupled Schrodinger system
    Bartsch, Thomas
    Wang, Zhi-Qiang
    Wei, Juncheng
    [J]. JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2007, 2 (02) : 353 - 367
  • [8] Bartsch T, 2006, J PARTIAL DIFFER EQ, V19, P200
  • [9] POSITIVE SOLUTIONS OF NON-LINEAR ELLIPTIC-EQUATIONS INVOLVING CRITICAL SOBOLEV EXPONENTS
    BREZIS, H
    NIRENBERG, L
    [J]. COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1983, 36 (04) : 437 - 477
  • [10] Singularly perturbed elliptic systems and multi-valued harmonic functions with free boundaries
    Caffarelli, L. A.
    Lin, Fang-Hua
    [J]. JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2008, 21 (03) : 847 - 862