Silicon Photoanodes Partially Covered by Ni@Ni(OH)2 Core-Shell Particles for Photoelectrochemical Water Oxidation

被引:60
作者
Xu, Guangzhou [1 ]
Xu, Zhe [1 ]
Shi, Zhan [2 ]
Pei, Lang [1 ]
Yan, Shicheng [1 ]
Gu, Zhengbin [1 ]
Zou, Zhigang [1 ,2 ]
机构
[1] Nanjing Univ, ERERC, Collaborat Innovat Ctr Adv Microstruct, Coll Engn & Appl Sci, 22 Hankou Rd, Nanjing 210093, Jiangsu, Peoples R China
[2] Nanjing Univ, Jiangsu Key Lab Nano Technol, Natl Lab Solid State Microstruct, Dept Phys, 22 Hankou Rd, Nanjing 210093, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
band bending; core-shell structures; nickel; photoelectrochemistry; water oxidation; TIO2; SOLAR-CELLS; HYDROGEN GENERATION; ENERGY-CONVERSION; SI PHOTOANODE; EFFICIENT; PERFORMANCE; LAYERS; BEHAVIOR;
D O I
10.1002/cssc.201700825
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Two obstacles hindering solar energy conversion by photoelectrochemical (PEC) water-splitting devices are the charge separation and the transport efficiency at the photoanode-electrolyte interface region. Herein, core-shell-structured Ni@Ni(OH)(2) nanoparticles were electrodeposited on the surface of an ntype Si photoanode. The Schottky barrier between Ni and Si is sensitive to the thickness of the Ni(OH)(2) shell. The photovoltage output of the photoanode increases with increasing thickness of the Ni(OH)(2) shell, and is influenced by interactions between Ni and Ni(OH)(2), the electrolyte screening effect, and the p-type nature of the Ni(OH)(2) layer. Ni@Ni(OH)(2) core-shell nanoparticles with appropriate shell thicknesses coupled to n-type Si photoanodes promote the separation of photogenerated carriers and improve the charge-injection efficiency to nearly 100 %. An onset potential of 1.03 V versus reversible hydrogen electrode (RHE) and a saturated current density of 36.4 mAcm(-2) was obtained for the assembly.
引用
收藏
页码:2897 / 2903
页数:7
相关论文
共 39 条
[11]  
Guo Y., 2016, ANGEW CHEM INT EDIT, V128, DOI DOI 10.1002/ANGE.201608453
[12]   A Rapid Microwave-Assisted Thermolysis Route to Highly Crystalline Carbon Nitrides for Efficient Hydrogen Generation [J].
Guo, Yufei ;
Li, Jing ;
Yuan, Yupeng ;
Li, Lu ;
Zhang, Mingyi ;
Zhou, Chenyan ;
Lin, Zhiqun .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2016, 55 (47) :14693-14697
[13]  
Hill JC, 2015, NAT MATER, V14, P1150, DOI [10.1038/nmat4408, 10.1038/NMAT4408]
[14]   Amorphous TiO2 coatings stabilize Si, GaAs, and GaP photoanodes for efficient water oxidation [J].
Hu, Shu ;
Shaner, Matthew R. ;
Beardslee, Joseph A. ;
Lichterman, Michael ;
Brunschwig, Bruce S. ;
Lewis, Nathan S. .
SCIENCE, 2014, 344 (6187) :1005-1009
[15]  
Ji L, 2017, NAT MATER, V16, P127, DOI [10.1038/NMAT4801, 10.1038/nmat4801]
[16]   Electrochemical Synthesis of Photoelectrodes and Catalysts for Use in Solar Water Splitting [J].
Kang, Donghyeon ;
Kim, Tae Woo ;
Kubota, Stephen R. ;
Cardiel, Allison C. ;
Cha, Hyun Gil ;
Choi, Kyoung-Shin .
CHEMICAL REVIEWS, 2015, 115 (23) :12839-12887
[17]   High-Performance Silicon Photoanodes Passivated with Ultrathin Nickel Films for Water Oxidation [J].
Kenney, Michael J. ;
Gong, Ming ;
Li, Yanguang ;
Wu, Justin Z. ;
Feng, Ju ;
Lanza, Mario ;
Dai, Hongjie .
SCIENCE, 2013, 342 (6160) :836-840
[18]   Photoelectrochemical and Impedance Spectroscopic Investigation of Water Oxidation with "Co-Pi"-Coated Hematite Electrodes [J].
Klahr, Benjamin ;
Gimenez, Sixto ;
Fabregat-Santiago, Francisco ;
Bisquert, Juan ;
Hamann, Thomas W. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (40) :16693-16700
[19]   Junction behavior of n-Si photoanodes protected by thin Ni elucidated from dual working electrode photoelectrochemistry [J].
Laskowski, Forrest A. L. ;
Nellist, Michael R. ;
Venkatkarthick, Radhakrishnan ;
Boettcher, Shannon W. .
ENERGY & ENVIRONMENTAL SCIENCE, 2017, 10 (02) :570-579
[20]  
Lin FD, 2014, NAT MATER, V13, P81, DOI [10.1038/NMAT3811, 10.1038/nmat3811]