Silicon Photoanodes Partially Covered by Ni@Ni(OH)2 Core-Shell Particles for Photoelectrochemical Water Oxidation

被引:60
作者
Xu, Guangzhou [1 ]
Xu, Zhe [1 ]
Shi, Zhan [2 ]
Pei, Lang [1 ]
Yan, Shicheng [1 ]
Gu, Zhengbin [1 ]
Zou, Zhigang [1 ,2 ]
机构
[1] Nanjing Univ, ERERC, Collaborat Innovat Ctr Adv Microstruct, Coll Engn & Appl Sci, 22 Hankou Rd, Nanjing 210093, Jiangsu, Peoples R China
[2] Nanjing Univ, Jiangsu Key Lab Nano Technol, Natl Lab Solid State Microstruct, Dept Phys, 22 Hankou Rd, Nanjing 210093, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
band bending; core-shell structures; nickel; photoelectrochemistry; water oxidation; TIO2; SOLAR-CELLS; HYDROGEN GENERATION; ENERGY-CONVERSION; SI PHOTOANODE; EFFICIENT; PERFORMANCE; LAYERS; BEHAVIOR;
D O I
10.1002/cssc.201700825
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Two obstacles hindering solar energy conversion by photoelectrochemical (PEC) water-splitting devices are the charge separation and the transport efficiency at the photoanode-electrolyte interface region. Herein, core-shell-structured Ni@Ni(OH)(2) nanoparticles were electrodeposited on the surface of an ntype Si photoanode. The Schottky barrier between Ni and Si is sensitive to the thickness of the Ni(OH)(2) shell. The photovoltage output of the photoanode increases with increasing thickness of the Ni(OH)(2) shell, and is influenced by interactions between Ni and Ni(OH)(2), the electrolyte screening effect, and the p-type nature of the Ni(OH)(2) layer. Ni@Ni(OH)(2) core-shell nanoparticles with appropriate shell thicknesses coupled to n-type Si photoanodes promote the separation of photogenerated carriers and improve the charge-injection efficiency to nearly 100 %. An onset potential of 1.03 V versus reversible hydrogen electrode (RHE) and a saturated current density of 36.4 mAcm(-2) was obtained for the assembly.
引用
收藏
页码:2897 / 2903
页数:7
相关论文
共 39 条
[1]  
[Anonymous], 2011, J ELECT DEVICES
[2]  
Bode H., 1966, Electrochim. Acta, V11, P1079, DOI [10.1016/0013-4686(66)80045-2, DOI 10.1016/0013-4686(66)80045-2]
[3]   Energy-Conversion Properties of Vapor-Liquid-Solid-Grown Silicon Wire-Array Photocathodes [J].
Boettcher, Shannon W. ;
Spurgeon, Joshua M. ;
Putnam, Morgan C. ;
Warren, Emily L. ;
Turner-Evans, Daniel B. ;
Kelzenberg, Michael D. ;
Maiolo, James R. ;
Atwater, Harry A. ;
Lewis, Nathan S. .
SCIENCE, 2010, 327 (5962) :185-187
[4]   PHOTOELECTROLYSIS OF WATER - SI IN SALT-WATER [J].
CANDEA, RM ;
KASTNER, M ;
GOODMAN, R ;
HICKOK, N .
JOURNAL OF APPLIED PHYSICS, 1976, 47 (06) :2724-2726
[5]  
Chen YW, 2011, NAT MATER, V10, P539, DOI [10.1038/NMAT3047, 10.1038/nmat3047]
[6]   A quantitative analysis of the efficiency of solar-driven water-splitting device designs based on tandem photoabsorbers patterned with islands of metallic electrocatalysts [J].
Chen, Yikai ;
Sun, Ke ;
Audesirk, Heather ;
Xiang, Chengxiang ;
Lewis, Nathan S. .
ENERGY & ENVIRONMENTAL SCIENCE, 2015, 8 (06) :1736-1747
[7]  
Du C., 2013, Angew. Chem, V125, P12924, DOI [10.1002/ange.201306263, DOI 10.1002/ANGE.201306263]
[8]   Hematite-Based Water Splitting with Low Turn-On Voltages [J].
Du, Chun ;
Yang, Xiaogang ;
Mayer, Matthew T. ;
Hoyt, Henry ;
Xie, Jin ;
McMahon, Gregory ;
Bischoping, Gregory ;
Wang, Dunwei .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2013, 52 (48) :12692-12695
[9]   Intensity dependence of the back reaction and transport of electrons in dye-sensitized nanacrystalline TiO2 solar cells [J].
Fisher, AC ;
Peter, LM ;
Ponomarev, EA ;
Walker, AB ;
Wijayantha, KGU .
JOURNAL OF PHYSICAL CHEMISTRY B, 2000, 104 (05) :949-958
[10]   Efficient Water Oxidation Using Nanostructured α-Nickel-Hydroxide as an Electrocatalyst [J].
Gao, Minrui ;
Sheng, Wenchao ;
Zhuang, Zhongbin ;
Fang, Qianrong ;
Gu, Shuang ;
Jiang, Jun ;
Yan, Yushan .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2014, 136 (19) :7077-7084