Dual-Carbon Network for the Effective Transport of Charged Species in a LiFePO4 Cathode for Lithium-Ion Batteries

被引:12
|
作者
Ding, Bo [1 ,2 ]
Ji, Ge [2 ]
Sha, Zhou [3 ]
Wu, Jishan [3 ]
Lu, Li [4 ]
Lee, Jim Yang [1 ,2 ]
机构
[1] Natl Univ Singapore, Ctr Life Sci CeLS, Grad Sch Integrat Sci & Engn, Singapore 117456, Singapore
[2] Natl Univ Singapore, Dept Chem & Biomol Engn, Singapore 119260, Singapore
[3] Natl Univ Singapore, Dept Chem, Singapore 117543, Singapore
[4] Natl Univ Singapore, Dept Mech Engn, Singapore 117576, Singapore
关键词
carbon; charge transport; graphene; lithium-ion batteries; LiFePO4; CAPACITY FADING MECHANISM; ELECTRICAL-CONDUCTIVITY; PHOSPHO-OLIVINES; GRAPHENE; PERFORMANCE; ENERGY; ELECTRODE; NANOCOMPOSITE; REDUCTION; IRON;
D O I
10.1002/ente.201402117
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Cost and safety considerations have driven up the interest in LiFePO4 as a lithium-ion battery cathode material. Carbon nanopainting is currently the most common approach to increase the power density of LiFePO4, but more can be done to improve the application performance further. In this study the rate performance of LiFePO4 was increased by using a conductive dual-carbon network that can extract and conduct electrons from the Li+ storage host more effectively than common pyrolyzed carbon. The dual-carbon network consists of a connected network of graphene sheets and a nanoscale continuous coating of pyrolyzed conductive carbon on the surface of the aggregated LiFePO4 nanocrystals. Such a construction supports fast electron transport between the aggregated LiFePO4 nanocrystals as well as within them. Consequently the LiFePO4/C composite fabricated as such delivered very high rate performances even at very high discharge rates (104 mAhg(-1) at 50 C where 1 C= 170 mAg(-1)).
引用
收藏
页码:63 / 69
页数:7
相关论文
共 50 条
  • [31] A novel carbon source coated on C-LiFePO4 as a cathode material for lithium-ion batteries
    Shi, Ming
    Kong, Ling-Bin
    Liu, Jin-Bei
    Yan, Kun
    Li, Jia-Jia
    Dai, Yan-Hua
    Luo, Yong-Chun
    Kang, Long
    IONICS, 2016, 22 (02) : 185 - 192
  • [32] Effect of carbon sources on the morphology of LiFePO4 cathode materials for lithium ion batteries
    Y. -M. Bai
    H. Chen
    Sh. -Ch. Han
    Russian Journal of Electrochemistry, 2011, 47 : 84 - 88
  • [33] Unique synthesis of novel octahedral micro/nano-hierarchical LiFePO4 cages as an enhanced cathode material for lithium-ion batteries
    Li, Wenxiang
    Zhang, Huijuan
    Mu, Yanping
    Liu, Li
    Wang, Yu
    JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (30) : 15661 - 15667
  • [34] Synthesis and characterization of Cu-doped LiFePO4 with/without carbon coating for cathode of lithium-ion batteries
    Ajpi, Cesario
    Diaz, Giovana
    Visbal, Heidy
    Hirao, Kazuyuki
    JOURNAL OF THE CERAMIC SOCIETY OF JAPAN, 2013, 121 (1413) : 441 - 443
  • [35] Advanced carbon materials/olivine LiFePO4 composites cathode for lithium ion batteries
    Gong, Chunli
    Xue, Zhigang
    Wen, Sheng
    Ye, Yunsheng
    Xie, Xiaolin
    JOURNAL OF POWER SOURCES, 2016, 318 : 93 - 112
  • [36] The influence of treatment in a sulfur environment on the electrochemical performance of LiFePO4 as a cathode material for lithium-ion batteries
    Lang, Xiaoshi
    Dong, Chunxi
    Cai, Kedi
    Li, Lan
    Zhang, Qingguo
    Wu, Hao
    JOURNAL OF ALLOYS AND COMPOUNDS, 2018, 739 : 536 - 541
  • [37] Two-dimensional Nb2CTx nanosheets decorated LiFePO4/C as cathode material for lithium-ion batteries
    Zeng, Guangcong
    Zhou, Jian
    Ren, Sili
    JOURNAL OF MATERIALS SCIENCE, 2023, 58 (12) : 5413 - 5426
  • [38] STRUCTURE AND ELECTROCHEMICAL CHARACTERISTICS OF LiFePO4 AS CATHODE MATERIAL FOR LITHIUM-ION BATTERIES
    Smits, J.
    Kucinskis, G.
    Bajars, G.
    Kleperis, J.
    LATVIAN JOURNAL OF PHYSICS AND TECHNICAL SCIENCES, 2011, 48 (02) : 27 - 31
  • [39] Synthesis and electrochemical characterizations of nano-crystalline LiFePO4 and Mg-doped LiFePO4 cathode materials for rechargeable lithium-ion batteries
    Arumugam, D.
    Kalaignan, G. Paruthimal
    Manisankar, P.
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2009, 13 (02) : 301 - 307
  • [40] Double Carbon Nano Coating of LiFePO4 Cathode Material for High Performance of Lithium Ion Batteries
    Ding, Yan-Hong
    Huang, Guo-Long
    Li, Huan-Huan
    Xie, Hai-Ming
    Sun, Hai-Zhu
    Zhang, Jing-Ping
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2015, 15 (12) : 9630 - 9635