Dual-Carbon Network for the Effective Transport of Charged Species in a LiFePO4 Cathode for Lithium-Ion Batteries

被引:12
作者
Ding, Bo [1 ,2 ]
Ji, Ge [2 ]
Sha, Zhou [3 ]
Wu, Jishan [3 ]
Lu, Li [4 ]
Lee, Jim Yang [1 ,2 ]
机构
[1] Natl Univ Singapore, Ctr Life Sci CeLS, Grad Sch Integrat Sci & Engn, Singapore 117456, Singapore
[2] Natl Univ Singapore, Dept Chem & Biomol Engn, Singapore 119260, Singapore
[3] Natl Univ Singapore, Dept Chem, Singapore 117543, Singapore
[4] Natl Univ Singapore, Dept Mech Engn, Singapore 117576, Singapore
关键词
carbon; charge transport; graphene; lithium-ion batteries; LiFePO4; CAPACITY FADING MECHANISM; ELECTRICAL-CONDUCTIVITY; PHOSPHO-OLIVINES; GRAPHENE; PERFORMANCE; ENERGY; ELECTRODE; NANOCOMPOSITE; REDUCTION; IRON;
D O I
10.1002/ente.201402117
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Cost and safety considerations have driven up the interest in LiFePO4 as a lithium-ion battery cathode material. Carbon nanopainting is currently the most common approach to increase the power density of LiFePO4, but more can be done to improve the application performance further. In this study the rate performance of LiFePO4 was increased by using a conductive dual-carbon network that can extract and conduct electrons from the Li+ storage host more effectively than common pyrolyzed carbon. The dual-carbon network consists of a connected network of graphene sheets and a nanoscale continuous coating of pyrolyzed conductive carbon on the surface of the aggregated LiFePO4 nanocrystals. Such a construction supports fast electron transport between the aggregated LiFePO4 nanocrystals as well as within them. Consequently the LiFePO4/C composite fabricated as such delivered very high rate performances even at very high discharge rates (104 mAhg(-1) at 50 C where 1 C= 170 mAg(-1)).
引用
收藏
页码:63 / 69
页数:7
相关论文
共 50 条
[11]   Wired porous cathode materials:: A novel concept for synthesis of LiFePO4 [J].
Dominko, Robert ;
Bele, Marjan ;
Goupil, Jean-Michel ;
Gaberscek, Miran ;
Hanzel, Darko ;
Arcon, Iztok ;
Jamnik, Janez .
CHEMISTRY OF MATERIALS, 2007, 19 (12) :2960-2969
[12]   Identify capacity fading mechanism in a commercial LiFePO4 cell [J].
Dubarry, Matthieu ;
Liaw, Bor Yann .
JOURNAL OF POWER SOURCES, 2009, 194 (01) :541-549
[13]   Nonequilibrium Thermodynamics of Porous Electrodes [J].
Ferguson, Todd R. ;
Bazant, Martin Z. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2012, 159 (12) :A1967-A1985
[14]   Raman spectrum of graphene and graphene layers [J].
Ferrari, A. C. ;
Meyer, J. C. ;
Scardaci, V. ;
Casiraghi, C. ;
Lazzeri, M. ;
Mauri, F. ;
Piscanec, S. ;
Jiang, D. ;
Novoselov, K. S. ;
Roth, S. ;
Geim, A. K. .
PHYSICAL REVIEW LETTERS, 2006, 97 (18)
[15]   The rise of graphene [J].
Geim, A. K. ;
Novoselov, K. S. .
NATURE MATERIALS, 2007, 6 (03) :183-191
[16]   Nanostructured materials for electrochemical energy conversion and storage devices [J].
Guo, Yu-Guo ;
Hu, Jin-Song ;
Wan, Li-Jun .
ADVANCED MATERIALS, 2008, 20 (15) :2878-2887
[17]   Nano-network electronic conduction in iron and nickel olivine phosphates [J].
Herle, PS ;
Ellis, B ;
Coombs, N ;
Nazar, LF .
NATURE MATERIALS, 2004, 3 (03) :147-152
[18]   Improved electrode performance of porous LiFePO4 using RuO2 as an oxidic nanoscale interconnect [J].
Hu, Yong-Sheng ;
Guo, Yu-Guo ;
Dominko, Robert ;
Gaberscek, Miran ;
Jamnik, Janko ;
Maier, Joachim .
ADVANCED MATERIALS, 2007, 19 (15) :1963-+
[19]   Conformal graphene encapsulation of tin oxide nanoparticle aggregates for improved performance in reversible Li+ storage [J].
Ji, Ge ;
Ding, Bo ;
Sha, Zhou ;
Wu, Jishan ;
Ma, Yue ;
Lee, Jim Yang .
NANOSCALE, 2013, 5 (13) :5965-5972
[20]   Surface effects on electrochemical properties of nano-sized LiFePO4 [J].
Julien, C. M. ;
Mauger, A. ;
Zaghib, K. .
JOURNAL OF MATERIALS CHEMISTRY, 2011, 21 (27) :9955-9968