Fitting jump models

被引:40
作者
Bemporad, Alberto [1 ]
Breschi, Valentina [2 ]
Piga, Dario [3 ]
Boyd, Stephen P. [4 ]
机构
[1] IMT Sch Adv Studies Lucca, Piazza San Francesco 19, I-55100 Lucca, Italy
[2] Politecn Milan, Dipartimento Elettron Informaz & Bioingn, Piazza L Da Vinci 32, I-20133 Milan, Italy
[3] Dalle Molle Inst Artificial Intelligence Res USI, Galleria 2,Via Cantonale 2c, CH-6928 Manno, Switzerland
[4] Stanford Univ, Dept Elect Engn, Stanford, CA 94305 USA
关键词
Model regression; Mode estimation; Jump models; Hidden Markov models; Piecewise affine models; IDENTIFICATION;
D O I
10.1016/j.automatica.2018.06.022
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We describe a new framework for fitting jump models to a sequence of data. The key idea is to alternate between minimizing a loss function to fit multiple model parameters, and minimizing a discrete loss function to determine which set of model parameters is active at each data point. The framework is quite general and encompasses popular classes of models, such as hidden Markov models and piecewise affine models. The shape of the chosen loss functions to minimize determines the shape of the resulting jump model. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:11 / 21
页数:11
相关论文
共 33 条
[11]   Piecewise affine regression via recursive multiple least squares and multicategory discrimination [J].
Breschi, Valentina ;
Piga, Dario ;
Bemporad, Alberto .
AUTOMATICA, 2016, 73 :155-162
[12]   Modeling, clustering, and segmenting video with mixtures of dynamic textures [J].
Chan, Antoni B. ;
Vasconcelos, Nuno .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2008, 30 (05) :909-926
[13]  
Costa O., 2006, Discrete-time Markov jump linear systems
[14]   MAXIMUM LIKELIHOOD FROM INCOMPLETE DATA VIA EM ALGORITHM [J].
DEMPSTER, AP ;
LAIRD, NM ;
RUBIN, DB .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-METHODOLOGICAL, 1977, 39 (01) :1-38
[15]   A clustering technique for the identification of piecewise affine systems [J].
Ferrari-Trecate, G ;
Muselli, M ;
Liberati, D ;
Morari, M .
AUTOMATICA, 2003, 39 (02) :205-217
[16]  
Ferrari-Trecate G., 2005, HYBRID IDENTIFICATIO
[17]  
Fridman M., 1994, TECHNICAL REPORT
[18]   Multicategory proximal support vector machine classifiers [J].
Fung, GM ;
Mangasarian, OL .
MACHINE LEARNING, 2005, 59 (1-2) :77-97
[19]  
Guidolin M, 2011, ADV ECONOMETRICS, V27, P1, DOI 10.1108/S0731-9053(2011)000027B004
[20]  
Hastie T., 2009, ELEMENTS STAT LEARNI, DOI DOI 10.1007/978-0-387-84858-7