A viral member of the ERV1/ALR protein family participates in a cytoplasmic pathway of disulfide bond formation

被引:123
作者
Senkevich, TG
White, CL
Koonin, EV
Moss, B
机构
[1] NIAID, Viral Dis Lab, NIH, Bethesda, MD 20892 USA
[2] Natl Lib Med, Natl Ctr Biotechnol Informat, NIH, Bethesda, MD 20892 USA
关键词
poxvirus; vaccinia virus; thiol oxidoreductase; glutaredoxin;
D O I
10.1073/pnas.210397997
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Proteins of the ERV1/ALR family are encoded by all eukaryotes and cytoplasmic DNA viruses for which substantial sequence information is available. Nevertheless, the roles of these proteins are imprecisely known. Multiple alignments of ERV1/ALR proteins indicated an invariant C-X-X-C motif, but no similarity to the thioredoxin fold was revealed by secondary structure predictions. We chose a virus model to investigate the role of these proteins as thiol oxidoreductases. When cells were infected with a mutant vaccinia virus in which the E10R gene encoding an ERV1/ALR family protein was repressed, the disulfide bonds of three other viral proteins-namely, the L1R and F9L proteins and the G4L glutaredoxin-were completely reduced. The same outcome occurred when Cys-43 or Cys-46, the putative redox cysteines of the E10R protein, was mutated to serine. These two cysteines were disulfide bonded during a normal virus infection but not if the synthesis of other viral late proteins was inhibited or the E10R protein was expressed by itself in uninfected cells, suggesting a requirement for an upstream viral thiol oxidoreductase. Remarkably, the cysteine-containing domains of the E10R and L1R viral membrane proteins and the glutaredoxin are in the cytoplasm, in which assembly of vaccinia virions occurs, rather than in the oxidizing environment of the endoplasmic reticulum, These data indicated a viral pathway of disulfide bond formation in which the E10R protein has a central role. By extension, the ERV1/ALR family may represent a ubiquitous class of cellular thiol oxidoreductases that interact with glutaredoxins or thioredoxins.
引用
收藏
页码:12068 / 12073
页数:6
相关论文
共 33 条
[1]   GLUTAREDOXIN HOMOLOG ENCODED BY VACCINIA VIRUS IS A VIRION-ASSOCIATED ENZYME WITH THIOLTRANSFERASE AND DEHYDROASCORBATE REDUCTASE ACTIVITIES [J].
AHN, BY ;
MOSS, B .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1992, 89 (15) :7060-7064
[2]   Gapped BLAST and PSI-BLAST: a new generation of protein database search programs [J].
Altschul, SF ;
Madden, TL ;
Schaffer, AA ;
Zhang, JH ;
Zhang, Z ;
Miller, W ;
Lipman, DJ .
NUCLEIC ACIDS RESEARCH, 1997, 25 (17) :3389-3402
[3]   Efficient folding of proteins with multiple disulfide bonds in the Escherichia coli cytoplasm [J].
Bessette, PH ;
Åslund, F ;
Beckwith, J ;
Georgiou, G .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (24) :13703-13708
[4]   The quiescin Q6 gene (QSCN6) is a fusion of two ancient gene families: Thioredoxin and ERV1 [J].
Coppock, DL ;
Cina-Poppe, D ;
Gilleran, S .
GENOMICS, 1998, 54 (03) :460-468
[5]   MUTATIONS THAT ALLOW DISULFIDE BOND FORMATION IN THE CYTOPLASM OF ESCHERICHIA-COLI [J].
DERMAN, AI ;
PRINZ, WA ;
BELIN, D ;
BECKWITH, J .
SCIENCE, 1993, 262 (5140) :1744-1747
[6]   Ero1p oxidizes protein disulfide isomerase in a pathway for disulfide bond formation in the endoplasmic reticulum [J].
Frand, AR ;
Kaiser, CA .
MOLECULAR CELL, 1999, 4 (04) :469-477
[7]   EUKARYOTIC TRANSIENT-EXPRESSION SYSTEM BASED ON RECOMBINANT VACCINIA VIRUS THAT SYNTHESIZES BACTERIOPHAGE-T7 RNA-POLYMERASE [J].
FUERST, TR ;
NILES, EG ;
STUDIER, FW ;
MOSS, B .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1986, 83 (21) :8122-8126
[8]   Vaccinia virus G4L gene encodes a second glutaredoxin [J].
Gvakharia, BO ;
Koonin, EK ;
Mathews, CK .
VIROLOGY, 1996, 226 (02) :408-411
[9]   CLONING AND SEQUENCE-ANALYSIS OF THE RAT AUGMENTOR OF LIVER-REGENERATION (ALR) GENE - EXPRESSION OF BIOLOGICALLY-ACTIVE RECOMBINANT ALR AND DEMONSTRATION OF TISSUE DISTRIBUTION [J].
HAGIYA, M ;
FRANCAVILLA, A ;
POLIMENO, L ;
IHARA, I ;
SAKAI, H ;
SEKI, T ;
SHIMONISHI, M ;
PORTER, KA ;
STARZL, TE .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1994, 91 (17) :8142-8146
[10]  
HOLMGREN A, 1989, J BIOL CHEM, V264, P13963