Discrete Lyapunov exponent and differential cryptanalysis

被引:18
作者
Jakimoski, G. [1 ]
Subbalakshmi, K. P. [1 ]
机构
[1] Stevens Inst Technol, Dept Elect & Comp Engn, Hoboken, NJ 07030 USA
关键词
block ciphers; chaotic maps; differential crypt-analysis; discrete chaos; Lyapunov exponent; maximum differential probability (DP);
D O I
10.1109/TCSII.2007.892214
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Partly motivated by the developments in chaos-based block cipher design, a definition of the discrete Lyapunov exponent for an arbitrary permutation of a finite lattice was recently proposed. We explore the relation between the discrete Lyapunov exponent and the maximum differential probability of a bijective mapping (i.e., an S-box or the mapping defined by a block cipher). Our analysis shows that "good" encryption transformations have discrete Lyapunov exponents close to the discrete Lyapunov exponent of a mapping that has a perfect nonlinearity. The converse does not hold.
引用
收藏
页码:499 / 501
页数:3
相关论文
共 16 条
[1]   Chaos in computer performance [J].
Berry, H ;
Gracia Pérez, D ;
Temam, O .
CHAOS, 2006, 16 (01)
[2]  
Biham E., 1991, Journal of Cryptology, V4, P3, DOI 10.1007/BF00630563
[3]  
Blank M., 1997, Translations Math. Monogr, V161
[4]  
Cernak J, 1996, PHYS LETT A, V214, P151, DOI 10.1016/0375-9601(96)00179-X
[5]   CHAOS IN DIGITAL-FILTERS [J].
CHUA, LO ;
LIN, T .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, 1988, 35 (06) :648-658
[6]  
Kocarev L., 2001, IEEE Circuits and Systems Magazine, V1, P6, DOI 10.1109/7384.963463
[7]   Discrete chaos -: I:: Theory [J].
Kocarev, Ljupco ;
Szczepanski, Janusz ;
Amigo, Jose M. ;
Tomovski, Igor .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2006, 53 (06) :1300-1309
[8]   The role of synchronization in digital communications using chaos - Part II: Chaotic modulation and chaotic synchronization [J].
Kolumban, G ;
Kennedy, MP ;
Chua, LO .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-FUNDAMENTAL THEORY AND APPLICATIONS, 1998, 45 (11) :1129-1140
[9]   On the dynamical degradation of digital piecewise linear chaotic maps [J].
Li, SJ ;
Chen, GR ;
Mou, XQ .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2005, 15 (10) :3119-3151
[10]   On the security of a chaotic encryption scheme: problems with computerized chaos in finite computing precision [J].
Li, SJ ;
Mou, XQ ;
Cai, YL ;
Ji, Z ;
Zhang, JH .
COMPUTER PHYSICS COMMUNICATIONS, 2003, 153 (01) :52-58