Negaton and complexiton solutions of sine-Gordon equation

被引:6
作者
Wu, Hongxia [1 ]
Fan, Tianyou
机构
[1] Beijing Inst Technol, Sch Sci, Dept Math, Beijing 100081, Peoples R China
[2] Jimei Univ, Sch Sci, Dept Math, Xiamen 361021, Peoples R China
关键词
negaton; complexiton; positon; Darboux transformation; sine-Gordon equation;
D O I
10.1016/j.physa.2007.01.016
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The negaton and complexiton solutions are introduced for the sine-Gordon equation by means of the Darboux transformation (DT). The mutual interactions of multinegaton and interactions of negaton-soliton and negaton-positon are discussed in detail. The superposition formulae for negations and complexiton are constructed. Noticing the relation of the sine-Gordon equation and the sinh-Gordon equation, we also obtain the real-valued singular negaton and complexiton solution for the sinh-Gordon equation. (C) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:471 / 482
页数:12
相关论文
共 16 条
[1]  
Ablowitz M.J., 1991, NONLINEAR EVOLUTION, V149
[2]   METHOD FOR SOLVING SINE-GORDON EQUATION [J].
ABLOWITZ, MJ ;
KAUP, DJ ;
NEWELL, AC ;
SEGUR, H .
PHYSICAL REVIEW LETTERS, 1973, 30 (25) :1262-1264
[3]   DARBOUX TRANSFORMATION, POSITONS AND GENERAL SUPERPOSITION FORMULA FOR THE SINE-GORDON EQUATION [J].
ANDREEV, VA ;
BREZHNEV, YV .
PHYSICS LETTERS A, 1995, 207 (1-2) :58-66
[4]   POSITRON SOLUTIONS OF THE SINE-GORDON EQUATION [J].
BEUTLER, R .
JOURNAL OF MATHEMATICAL PHYSICS, 1993, 34 (07) :3098-3109
[5]  
BIANCHI L, 1986, LEZIONI GEOMETRIA DI
[6]   Interactions among periodic waves and solitary waves of the (N+1)-dimensional sine-Gordon field -: art. no. 036604 [J].
Lou, SY ;
Hu, HC ;
Tang, XY .
PHYSICAL REVIEW E, 2005, 71 (03)
[7]   Complexiton solutions to the Korteweg-de Vries equation [J].
Ma, WX .
PHYSICS LETTERS A, 2002, 301 (1-2) :35-44
[8]  
Matveev V. B., 1991, Darboux transformation and solitons, DOI DOI 10.1007/978-3-662-00922-2
[9]   POSITON POSITON AND SOLITON POSITON COLLISIONS - KDV CASE [J].
MATVEEV, VB .
PHYSICS LETTERS A, 1992, 166 (3-4) :209-212
[10]  
MATVEEV VB, 1992, THEORY POSITION, V1