Research Progress of Gas Sensor Based on Graphene and Its Derivatives: A Review

被引:179
作者
Tian, Wenchao [1 ]
Liu, Xiaohan [1 ]
Yu, Wenbo [1 ]
机构
[1] Xidian Univ, Sch Electromech Engn, 2 Taibai South Rd, Xian 710071, Shaanxi, Peoples R China
来源
APPLIED SCIENCES-BASEL | 2018年 / 8卷 / 07期
基金
中国国家自然科学基金; 美国国家科学基金会;
关键词
graphene; gas sensor; sensitive; response time; composite; synthesis; FIELD-EFFECT TRANSISTORS; ROOM-TEMPERATURE; SENSING PROPERTIES; THIN-FILM; MONOLAYER GRAPHENE; LAYER GRAPHENE; LARGE-AREA; OXIDE; NANOPARTICLES; COMPOSITE;
D O I
10.3390/app8071118
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Gas sensors are devices that convert a gas volume fraction into electrical signals, and they are widely used in many fields such as environmental monitoring. Graphene is a new type of two-dimensional crystal material that has many excellent properties including large specific surface area, high conductivity, and high Young's modulus. These features make it ideally suitable for application for gas sensors. In this paper, the main characteristics of gas sensor are firstly introduced, followed by the preparation methods and properties of graphene. In addition, the development process and the state of graphene gas sensors are introduced emphatically in terms of structure and performance of the sensor. The emergence of new candidates including graphene, polymer and metal/metal oxide composite enhances the performance of gas detection significantly. Finally, the clear direction of graphene gas sensors for the future is provided according to the latest research results and trends. It provides direction and ideas for future research.
引用
收藏
页数:21
相关论文
共 94 条
[1]  
[Anonymous], 2009, PHILOS T R SOC, DOI DOI 10.1098/RSTL.1859.0013
[2]   Graphene-like nano-sheets for surface acoustic wave gas sensor applications [J].
Arsat, R. ;
Breedon, M. ;
Shafiei, M. ;
Spizziri, P. G. ;
Gilje, S. ;
Kaner, R. B. ;
Kalantar-Zadeh, K. ;
Wlodarski, W. .
CHEMICAL PHYSICS LETTERS, 2009, 467 (4-6) :344-347
[3]   Superior thermal conductivity of single-layer graphene [J].
Balandin, Alexander A. ;
Ghosh, Suchismita ;
Bao, Wenzhong ;
Calizo, Irene ;
Teweldebrhan, Desalegne ;
Miao, Feng ;
Lau, Chun Ning .
NANO LETTERS, 2008, 8 (03) :902-907
[4]   Recent developments on graphene and graphene oxide based solid state gas sensors [J].
Basu, S. ;
Bhattacharyya, P. .
SENSORS AND ACTUATORS B-CHEMICAL, 2012, 173 :1-21
[5]   Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics [J].
Berger, C ;
Song, ZM ;
Li, TB ;
Li, XB ;
Ogbazghi, AY ;
Feng, R ;
Dai, ZT ;
Marchenkov, AN ;
Conrad, EH ;
First, PN ;
de Heer, WA .
JOURNAL OF PHYSICAL CHEMISTRY B, 2004, 108 (52) :19912-19916
[6]   Improved Sensitivity with Low Limit of Detection of a Hydrogen Gas Sensor Based on rGO-Loaded Ni-Doped ZnO Nanostructures [J].
Bhati, Vijendra Singh ;
Ranwa, Sapana ;
Rajamani, Saravanan ;
Kumari, Kusum ;
Raliya, Ramesh ;
Biswas, Pratim ;
Kumar, Mahesh .
ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (13) :11116-11124
[7]   Step-edge instability during epitaxial growth of graphene from SiC(0001) [J].
Borovikov, Valery ;
Zangwill, Andrew .
PHYSICAL REVIEW B, 2009, 80 (12)
[8]   Phthalocyanine-based field-effect transistors as gas sensors [J].
Bouvet, M .
ANALYTICAL AND BIOANALYTICAL CHEMISTRY, 2006, 384 (02) :366-373
[9]   Oxygen sensors made by monolayer graphene under room temperature [J].
Chen, C. W. ;
Hung, S. C. ;
Yang, M. D. ;
Yeh, C. W. ;
Wu, C. H. ;
Chi, G. C. ;
Ren, F. ;
Pearton, S. J. .
APPLIED PHYSICS LETTERS, 2011, 99 (24)
[10]   Electrochemical Gate-Controlled Charge Transport in Graphene in Ionic Liquid and Aqueous Solution [J].
Chen, Fang ;
Qing, Quan ;
Xia, Jilin ;
Li, Jinghong ;
Tao, Nongjian .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2009, 131 (29) :9908-+