Decay Properties for the Numerical Solutions of a Partial Differential Equation with Memory

被引:12
作者
Xu, Da [1 ]
机构
[1] Hunan Normal Univ, Dept Math, Changsha 410081, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
Partial differential equations with memory; Convolution quadrature; Finite element methods; Decay properties; Frequency domain methods; UNIFORM L(1) BEHAVIOR; INTEGRODIFFERENTIAL EQUATION; CONVOLUTION QUADRATURE; VOLTERRA-EQUATIONS; EVOLUTION EQUATION; ASYMPTOTIC-BEHAVIOR; FRACTIONAL ORDER; STABILITY; APPROXIMATIONS;
D O I
10.1007/s10915-014-9850-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study decay properties of the numerical solutions of a class of partial differential equations which arises in the theory of linear viscoelasticity. Here is a positive self-adjoint densely defined linear operator in a Hilbert space , and the real-valued kernel is assumed to be nonnegative non-increasing, not identically , and satisfy . The proposed discretization uses convolution quadrature based on the trapezoidal rule in time, and piecewise linear finite elements in space. We establish the uniform stability numerical schemes, and Polynomial decay numerical methods in time. The fully discrete uniform error estimates are derived. Some simple numerical examples illustrate our theoretical error bounds.
引用
收藏
页码:146 / 178
页数:33
相关论文
共 30 条
[1]   Decay estimates for second order evolution equations with memory [J].
Alabau-Boussouira, Fatiha ;
Cannarsa, Piermarco ;
Sforza, Daniela .
JOURNAL OF FUNCTIONAL ANALYSIS, 2008, 254 (05) :1342-1372
[2]   On exponential asymptotic stability in linear viscoelasticity [J].
Appleby, John A. D. ;
Fabrizio, Mauro ;
Lazzari, Barbara ;
Reynolds, David W. .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2006, 16 (10) :1677-1694
[3]   Existence and decay of solutions of a viscoelastic equation with a nonlinear source [J].
Berrimi, S ;
Messaoudi, SA .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2006, 64 (10) :2314-2331
[4]   SOME CONVERGENCE ESTIMATES FOR SEMI-DISCRETE GALERKIN TYPE APPROXIMATIONS FOR PARABOLIC EQUATIONS [J].
BRAMBLE, JH ;
SCHATZ, AH ;
THOMEE, V ;
WAHLBIN, LB .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1977, 14 (02) :218-241
[5]   NONHOMOGENEOUS INTEGRODIFFERENTIAL EQUATION IN HILBERT-SPACE [J].
CARR, RW ;
HANNSGEN, KB .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1979, 10 (05) :961-984
[6]   RESOLVENT FORMULAS FOR A VOLTERRA EQUATION IN HILBERT-SPACE [J].
CARR, RW ;
HANNSGEN, KB .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1982, 13 (03) :459-483
[7]   A fractional trapezoidal rule for integro-differential equations of fractional order in Banach spaces [J].
Cuesta, E ;
Palencia, C .
APPLIED NUMERICAL MATHEMATICS, 2003, 45 (2-3) :139-159
[8]   Uniform l1 behaviour for time discretization of a Volterra equation with completely monotonic kernel: I.: stability [J].
Da, X .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2002, 22 (01) :133-151
[9]  
Fabrizio M., 2002, Appl. Analysis, V81, P1245
[10]   Asymptotic behaviour of a semilinear viscoelastic beam model [J].
Fasangová, E ;
Prüss, J .
ARCHIV DER MATHEMATIK, 2001, 77 (06) :488-497