Deep Learning Based Radio-Signal Identification With Hardware Design

被引:51
作者
Mendis, Gihan Janith [1 ]
Wei-Kocsis, Jin [1 ]
Madanayake, Arjuna [2 ]
机构
[1] Univ Akron, Akron, OH 44325 USA
[2] Florida Int Univ, Miami, FL 33199 USA
基金
美国国家航空航天局;
关键词
RF signals; Deep learning; Modulation; Feature extraction; Training; Hardware; Field programmable gate arrays; Automated modulation classification (AMC); deep learning; low-complexity deep belief network; microunmanned aerial system (UAS); radio signals classification; COGNITIVE RADIO; FRAMEWORK;
D O I
10.1109/TAES.2019.2891155
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
This paper proposes a deep learning based intelligent method for detecting and identifying radio signals considering two applications: first, cognitive radar for identifying micro unmanned aerial systems and second, an automated modulation classification scheme for cognitive radio, which can be used for aeronautical communication systems. Our proposed intelligent method is designed of a spectral correlation function based feature extractor and a low-complexity deep belief network classifier with low FPGA logic utilization.
引用
收藏
页码:2516 / 2531
页数:16
相关论文
共 33 条
[1]  
[Anonymous], 2017, 2017 COGN COMM AER A
[2]  
[Anonymous], 2016, 2016 IEEE INT C COMM
[3]  
[Anonymous], THESIS
[4]  
Arnold V. I., 2012, Geometrical methods in the theory of ordinary differential equations, V250
[5]   A survey on deep learning based approaches for action and gesture recognition in image sequences [J].
Asadi-Aghbolaghi, Maryam ;
Clapes, Albert ;
Bellantonio, Marco ;
Escalante, Hugo Jair ;
Ponce-Lopez, Victor ;
Baro, Xavier ;
Guyon, Isabelle ;
Kasaei, Shohreh ;
Escalera, Sergio .
2017 12TH IEEE INTERNATIONAL CONFERENCE ON AUTOMATIC FACE AND GESTURE RECOGNITION (FG 2017), 2017, :476-483
[6]   Smart Cameras: 2D Affine Models for Determining Subject Facial Expressions [J].
Bacivarov, Ioana ;
Corcoran, Peter ;
Ionita, Mircea .
IEEE TRANSACTIONS ON CONSUMER ELECTRONICS, 2010, 56 (02) :289-297
[7]   Learning Deep Architectures for AI [J].
Bengio, Yoshua .
FOUNDATIONS AND TRENDS IN MACHINE LEARNING, 2009, 2 (01) :1-127
[8]  
Besbes S, 2016, 2016 2ND INTERNATIONAL CONFERENCE ON ADVANCED TECHNOLOGIES FOR SIGNAL AND IMAGE PROCESSING (ATSIP), P782, DOI 10.1109/ATSIP.2016.7523188
[9]  
Carreira-Perpinan M. A., 2005, AISTATS BRIDGETOWN B, V10, P33
[10]  
Cho K.H., 2013, P IJCNN, P1