Phase-sensitive nonclassical properties in quantum metrology with a displaced squeezed vacuum state

被引:0
作者
Tao, Zhiwei [1 ,2 ]
Ren, Yichong [2 ]
Abdukirim, Azezigul [2 ]
Liu, Shiwei [1 ,2 ]
Rao, Ruizhong [2 ]
机构
[1] Univ Sci & Technol China, Sch Environm Sci & Optoelect Technol, Hefei 230026, Peoples R China
[2] Chinese Acad Sci, Anhui Inst Opt & Fine Mech, Key Lab Atmospher Opt, Hefei 230031, Peoples R China
关键词
INFORMATION;
D O I
10.1364/JOSAB.419752
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We predict that the phase-dependent error distribution of locally unentangled quantum states directly affects quantum parameter estimation accuracy. Therefore, we employ the displaced squeezed vacuum (DSV) state as a probe state and investigate an interesting question of the phase-sensitive nonclassical properties in the DSV's metrology. We found that the accuracy limit of parameter estimation is a function of the phase-sensitive parameter phi - theta/2 with a period pi. We show that when phi - theta/2 is an element of [k pi/2, 3k pi/4) (k is an element of Z), we can obtain the accuracy of parameter estimation approaching the ultimate quantum limit through the use of the DSV state with the larger displacement and squeezing strength, whereas when phi - theta/2 is an element of (3k pi/4, k pi] (k is an element of Z), the optimal estimation accuracy can be acquired only when the DSV state degenerates to a squeezed vacuum state. (C) 2021 Optical Society of America
引用
收藏
页码:1662 / 1668
页数:7
相关论文
共 49 条
  • [1] Aasi J, 2013, NAT PHOTONICS, V7, P613, DOI [10.1038/NPHOTON.2013.177, 10.1038/nphoton.2013.177]
  • [2] Quantum Metrology with Two-Mode Squeezed Vacuum: Parity Detection Beats the Heisenberg Limit
    Anisimov, Petr M.
    Raterman, Gretchen M.
    Chiruvelli, Aravind
    Plick, William N.
    Huver, Sean D.
    Lee, Hwang
    Dowling, Jonathan P.
    [J]. PHYSICAL REVIEW LETTERS, 2010, 104 (10)
  • [3] Phase sensitivity of a Mach-Zehnder interferometer with single-intensity and difference-intensity detection
    Ataman, Stefan
    Preda, Anca
    Ionicioiu, Radu
    [J]. PHYSICAL REVIEW A, 2018, 98 (04)
  • [4] Multiparameter quantum estimation theory in quantum Gaussian states
    Bakmou, Lahcen
    Daoud, Mohammed
    Laamara, Rachid ahl
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2020, 53 (38)
  • [5] Breaking the Heisenberg limit with inefficient detectors -: art. no. 045801
    Beltrán, J
    Luis, A
    [J]. PHYSICAL REVIEW A, 2005, 72 (04):
  • [6] Sub-shot-noise sensitivities without entanglement
    Benatti, F.
    Braun, D.
    [J]. PHYSICAL REVIEW A, 2013, 87 (01):
  • [7] Quantum metrology with entangled spin-coherent states of two modes
    Berrada, K.
    Khalek, S. Abdel
    Ooi, C. H. Raymond
    [J]. PHYSICAL REVIEW A, 2012, 86 (03):
  • [8] Quantum-classical boundary for precision optical phase estimation
    Birchall, Patrick M.
    O'Brien, Jeremy L.
    Matthews, Jonathan C. F.
    Cable, Hugo
    [J]. PHYSICAL REVIEW A, 2017, 96 (06)
  • [9] Quantum-enhanced measurements without entanglement
    Braun, Daniel
    Adesso, Gerardo
    Benatti, Fabio
    Floreanini, Roberto
    Marzolino, Ugo
    Mitchell, Morgan W.
    Pirandola, Stefano
    [J]. REVIEWS OF MODERN PHYSICS, 2018, 90 (03)
  • [10] STATISTICAL DISTANCE AND THE GEOMETRY OF QUANTUM STATES
    BRAUNSTEIN, SL
    CAVES, CM
    [J]. PHYSICAL REVIEW LETTERS, 1994, 72 (22) : 3439 - 3443