Sharp and Meager Elements in Orthocomplete Homogeneous Effect Algebras

被引:15
|
作者
Jenca, Gejza [1 ]
机构
[1] Fac Civil Engn, Dept Math & Descript Geometry, Bratislava 81368, Slovakia
来源
ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS | 2010年 / 27卷 / 01期
关键词
Effect algebra; Orthomodular lattice; BCK-algebra; PARTIAL ABELIAN MONOIDS; STONE LATTICES; BLOCKS;
D O I
10.1007/s11083-009-9137-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that every orthocomplete homogeneous effect algebra is sharply dominating. Let us denote the greatest sharp element below x by x (a dagger"). For every element x of an orthocomplete homogeneous effect algebra and for every block B with x aaEuro parts per thousand B, the interval [x (a dagger"),x] is a subset of B. For every meager element (that means, an element x with x (a dagger") = 0), the interval [0,x] is a complete MV-effect algebra. As a consequence, the set of all meager elements of an orthocomplete homogeneous effect algebra forms a commutative BCK-algebra with the relative cancellation property. We prove that a complete lattice ordered effect algebra E is completely determined by the complete orthomodular lattice S(E) of sharp elements, the BCK-algebra M(E) of meager elements and a mapping h:S(E)-> 2 (M(E)) given by h(a) = [0,a] a (c) aEuro parts per thousand M(E).
引用
收藏
页码:41 / 61
页数:21
相关论文
共 50 条
  • [1] Sharp and Meager Elements in Orthocomplete Homogeneous Effect Algebras
    Gejza Jenča
    Order, 2010, 27 : 41 - 61
  • [2] Meager projections in orthocomplete homogeneous effect algebras
    Ji, Wei
    FUZZY SETS AND SYSTEMS, 2018, 339 : 51 - 61
  • [3] Homogeneous orthocomplete effect algebras are covered by MV-algebras
    Niederle, Josef
    Paseka, Jan
    FUZZY SETS AND SYSTEMS, 2013, 210 : 89 - 101
  • [4] Orthocomplete effect algebras
    Jenca, G
    Pulmannová, S
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 131 (09) : 2663 - 2671
  • [5] Centrally orthocomplete effect algebras
    Foulis, David J.
    Pulmannova, Sylvia
    ALGEBRA UNIVERSALIS, 2010, 64 (3-4) : 283 - 307
  • [6] Centrally orthocomplete effect algebras
    David J. Foulis
    Sylvia Pulmannová
    Algebra universalis, 2010, 64 : 283 - 307
  • [7] Sharp Elements in Effect Algebras
    Zdenka Riečanová
    International Journal of Theoretical Physics, 2001, 40 : 913 - 920
  • [8] Sharp elements in effect algebras
    Riecanová, Z
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2001, 40 (05) : 913 - 920
  • [9] Sharply Orthocomplete Effect Algebras
    Kalina, M.
    Paseka, J.
    Riecanova, Z.
    ACTA POLYTECHNICA, 2010, 50 (05) : 51 - 56
  • [10] Characterization of homogeneity in orthocomplete atomic effect algebras
    Ji, Wei
    FUZZY SETS AND SYSTEMS, 2014, 236 : 113 - 121