The influence of Sc and Zr additions on microstructure and corrosion behavior of AA5182 alloy sheet

被引:53
作者
Qiu, Youcai [1 ,2 ]
Yang, Xiaofang [1 ,2 ]
Li, Jingxiao [1 ,2 ]
Xiang, Shihua [1 ,2 ]
Shi, Jie [1 ,2 ]
Xu, Junyao [2 ,3 ]
Sanders, Robert E., Jr. [1 ,2 ]
机构
[1] Chongqing Univ, Shenyang Natl Lab Mat Sci, Chongqing 400044, Peoples R China
[2] Chongqing Univ, Coll Mat Sci & Engn, Int Joint Lab Light Alloys, Minist Educ, Chongqing 400044, Peoples R China
[3] Chongqing Univ, Natl Engn Res Ctr Magnesium Alloys, Chongqing 400044, Peoples R China
基金
中国国家自然科学基金;
关键词
Aluminum; Intergranular corrosion; TEM; Al-3(Sc; Zr); BETA-PHASE PRECIPITATION; TRANSMISSION ELECTRON-MICROSCOPY; ALUMINUM-ALLOYS; HEAT-TREATMENT; AL; SENSITIZATION; CRACKING; EVOLUTION; AL3MG2;
D O I
10.1016/j.corsci.2022.110181
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Minor additions of Sc and Zr to a 5182 base alloy were used to study the effects of microstructure on the susceptibility to intergranular corrosion (IGC) of 5xxx sheet alloys. The results showed that minor Sc and Zr additions significantly decrease the IGC susceptibility as measured by the depth of IGC for the high-temperature annealed sheet. The improvement in IGC resistance is attributed to a high number density of nano-scaled coherent Al-3(Sc,Zr) dispersoids which resist recrystallization, and produce a fine subgrain structure. The character of the subgrain structure is critical to prevent the occurrence of continuous intergranular Al3Mg2 precipitates during sensitization.
引用
收藏
页数:17
相关论文
共 63 条
[1]  
[Anonymous], 2004, STAND TEST METH DET
[2]  
[Anonymous], 2005, 79982005 GBT CHIN IN
[3]   Stress corrosion cracking susceptibility of ultrafine grained Al-Mg-Sc alloy [J].
Argade, G. R. ;
Kumar, N. ;
Mishra, R. S. .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2013, 565 :80-89
[4]   Quantification of Sensitization in AA5083-H131 via Imaging Ga-Embrittled Fracture Surfaces [J].
Birbilis, N. ;
Zhang, R. ;
Lim, M. L. C. ;
Gupta, R. K. ;
Davies, C. H. J. ;
Lynch, S. P. ;
Kelly, R. G. ;
Scully, J. R. .
CORROSION, 2013, 69 (04) :396-402
[5]  
Bovard FrancineS., 2005, Corrosion in Marine and Saltwater Environments, VII, P232
[6]   Effects of Zn additions on the grain boundary precipitation and corrosion of Al-5083 [J].
Carroll, MC ;
Gouma, PI ;
Mills, MJ ;
Daehn, GS ;
Dunbar, BR .
SCRIPTA MATERIALIA, 2000, 42 (04) :335-340
[7]   Local corrosion mechanism of an Al-Zn-Mg-Cu alloy in oxygenated chloride solution: Cathode activity of quenching-induced η precipitates [J].
Chen, Mingyang ;
Zheng, Xu ;
He, Kezhun ;
Liu, Shengdan ;
Zhang, Yong .
CORROSION SCIENCE, 2021, 191
[8]   REVERSING SENSITIZATION OF NATURALLY EXFOLIATED 5456-H116 ALUMINUM ALLOYS [J].
Chen, Ren-Yu ;
Lai, Cheng-Chyuan .
JOURNAL OF MARINE SCIENCE AND TECHNOLOGY-TAIWAN, 2014, 22 (04) :450-454
[9]   The native oxide film on a model aluminium-copper alloy studied by XPS and ToF-SIMS [J].
Cornette, P. ;
Zanna, S. ;
Seyeux, A. ;
Costa, D. ;
Marcus, P. .
CORROSION SCIENCE, 2020, 174 (174)
[10]   Stress Corrosion Cracking of Al-Mg Alloy 5083 Sensitized at Low Temperature [J].
Crane, Cortney B. ;
Gangloff, Richard P. .
CORROSION, 2016, 72 (02) :221-241