Transition metal single atom anchored C3N for highly efficient formic acid dehydrogenation: A DFT study

被引:23
作者
Bing, Qiming [1 ]
Liu, Jing-yao [1 ]
机构
[1] Jilin Univ, Coll Chem, Inst Theoret Chem, Lab Theoret & Computat Chem, Changchun 130023, Peoples R China
基金
中国国家自然科学基金;
关键词
C3N; Single-atom catalysts; Hydrogen production; Formic acid dehydrogenation; Density functional theory; ELASTIC BAND METHOD; PLANE-WAVE; HYDROGEN-PRODUCTION; GRAPHENE; CATALYSTS; FUTURE; DECOMPOSITION; ADSORPTION; CARBON; COHP;
D O I
10.1016/j.apsusc.2021.150186
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Formic acid (HCOOH) is a promising hydrogen carrier. Developing efficient and low-cost catalysts is significant for the application of HCOOH in clean and renewable energy. In this work, a series of single-atom catalysts composed of twelve transition metal single atoms (Mn, Fe, Ru, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag and Au) supported on a novel carbon-nitrogen material (C3N) were designed and the catalytic performance for HCOOH dehydrogenation was demonstrated using density functional theory. By evaluating the binding strength of TM atoms, the adsorption stability of HCOOH and the hydrogen evolution performance of H species, Ni@C3N, Pd@C3N and Pt@C3N were finally screened out as candidates, on which the HCOO-dehydrogenation pathway is the most preferred. Judging from energetic span, Pd@C3N (0.60 eV) owns the best catalytic activity, while Ni@C3N (1.02 eV) and Pt@C3N (1.12 eV) are also appreciable alternatives compared with Pd( 111) (1.23 eV). Through the analysis of catalytic mechanism and electronic structure, the factors influencing reaction activity were revealed. This work enlightens the advantage of C3N-based materials and provides a novel approach for rationally designing high-performance catalysts for hydrogen production from HCOOH.
引用
收藏
页数:8
相关论文
共 46 条
  • [1] Convenient syntheses of cyanuric chloride-derived NHC ligands, their Ag(I) and Au(I) complexes and antimicrobial activity
    Almalioti, Foteini
    MacDougall, James
    Hughes, Stephen
    Hasson, Mohammed M.
    Jenkins, Robert L.
    Ward, Benjamin D.
    Tizzard, Graham J.
    Coles, Simon J.
    Williams, David W.
    Bamford, Sarah
    Fallis, Ian A.
    Dervisi, Athanasia
    [J]. DALTON TRANSACTIONS, 2013, 42 (34) : 12370 - 12380
  • [2] Introducing novel electronic and magnetic properties in C3N nanosheets by defect engineering and atom substitution
    Bafekry, Asadollah
    Shayesteh, Saber Farjami
    Peeters, Francois M.
    [J]. PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2019, 21 (37) : 21070 - 21083
  • [3] C3N Monolayer: Exploring the Emerging of Novel Electronic and Magnetic Properties with Adatom Adsorption, Functionalizations, Electric Field, Charging, and Strain
    Bafekry, Asadollah
    Shayesteh, Saber Farjami
    Peeters, Francois M.
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2019, 123 (19) : 12485 - 12499
  • [4] Ni anchored C2N monolayers as low-cost and efficient catalysts for hydrogen production from formic acid
    Bing, Qiming
    Liu, Wei
    Yi, Wencai
    Liu, Jing-yao
    [J]. JOURNAL OF POWER SOURCES, 2019, 413 : 399 - 407
  • [5] PROJECTOR AUGMENTED-WAVE METHOD
    BLOCHL, PE
    [J]. PHYSICAL REVIEW B, 1994, 50 (24): : 17953 - 17979
  • [6] Single Atoms of Pt-Group Metals Stabilized by N-Doped Carbon Nanofibers for Efficient Hydrogen Production from Formic Acid
    Bulushev, Dmitri A.
    Zacharska, Monika
    Lisitsyn, Alexander S.
    Podyacheva, Olga Yu.
    Hage, Fredrik S.
    Ramasse, Quentin M.
    Bangert, Ursel
    Bulusheva, Lyubov G.
    [J]. ACS CATALYSIS, 2016, 6 (06): : 3442 - 3451
  • [7] Single Isolated Pd2+ Cations Supported on N-Doped Carbon as Active Sites for Hydrogen Production from Formic Acid Decomposition
    Bulushev, Dmitri A.
    Zacharska, Monika
    Shlyakhova, Elena V.
    Chuvilin, Audrey L.
    Guo, Yina
    Beloshapkin, Sergey
    Okotrub, Alexander V.
    Bulusheva, Lyubov G.
    [J]. ACS CATALYSIS, 2016, 6 (02): : 681 - 691
  • [8] Crystal Orbital Hamilton Population (COHP) Analysis As Projected from Plane-Wave Basis Sets
    Deringer, Volker L.
    Tchougreeff, Andrei L.
    Dronskowski, Richard
    [J]. JOURNAL OF PHYSICAL CHEMISTRY A, 2011, 115 (21) : 5461 - 5466
  • [9] CRYSTAL ORBITAL HAMILTON POPULATIONS (COHP) - ENERGY-RESOLVED VISUALIZATION OF CHEMICAL BONDING IN SOLIDS BASED ON DENSITY-FUNCTIONAL CALCULATIONS
    DRONSKOWSKI, R
    BLOCHL, PE
    [J]. JOURNAL OF PHYSICAL CHEMISTRY, 1993, 97 (33) : 8617 - 8624
  • [10] Atomic cobalt on nitrogen-doped graphene for hydrogen generation
    Fei, Huilong
    Dong, Juncai
    Arellano-Jimenez, M. Josefina
    Ye, Gonglan
    Kim, Nam Dong
    Samuel, Errol L. G.
    Peng, Zhiwei
    Zhu, Zhuan
    Qin, Fan
    Bao, Jiming
    Yacaman, Miguel Jose
    Ajayan, Pulickel M.
    Chen, Dongliang
    Tour, James M.
    [J]. NATURE COMMUNICATIONS, 2015, 6